You should do distributive property.
Answer:
6. 8
7. 10
8. 29
Step-by-step explanation:
6. 3+5
7. 5+5
8. 24+5
Answer:
-2, 8/3
Step-by-step explanation:
You can consider the area to be that of a trapezoid with parallel bases f(a) and f(4), and width (4-a). The area of that trapezoid is ...
A = (1/2)(f(a) +f(4))(4 -a)
= (1/2)((3a -1) +(3·4 -1))(4 -a)
= (1/2)(3a +10)(4 -a)
We want this area to be 12, so we can substitute that value for A and solve for "a".
12 = (1/2)(3a +10)(4 -a)
24 = (3a +10)(4 -a) = -3a² +2a +40
3a² -2a -16 = 0 . . . . . . subtract the right side
(3a -8)(a +2) = 0 . . . . . factor
Values of "a" that make these factors zero are ...
a = 8/3, a = -2
The values of "a" that make the area under the curve equal to 12 are -2 and 8/3.
_____
<em>Alternate solution</em>
The attachment shows a solution using the numerical integration function of a graphing calculator. The area under the curve of function f(x) on the interval [a, 4] is the integral of f(x) on that interval. Perhaps confusingly, we have called that area f(a). As we have seen above, the area is a quadratic function of "a". I find it convenient to use a calculator's functions to solve problems like this where possible.
Check the picture below.
a)
so the perimeter will include "part" of the circumference of the green circle, and it will include "part" of the red encircled section, plus the endpoints where the pathway ends.
the endpoints, are just 2 meters long, as you can see 2+15+2 is 19, or the radius of the "outer radius".
let's find the circumference of the green circle, and then subtract the arc of that sector that's not part of the perimeter.
and then let's get the circumference of the red encircled section, and also subtract the arc of that sector, and then we add the endpoints and that's the perimeter.


b)
we do about the same here as well, we get the full area of the red encircled area, and then subtract the sector with 135°, and then subtract the sector of the green circle that is 360° - 135°, or 225°, the part that wasn't included in the previous subtraction.

Answer:
two of the sides are 21 m long and one of the sides is 28 m long