Answer:
Step-by-step explanation:
So think like a percent 3 percent of 23 of mean multiply so first 23 divided by 100 equals what then to check the answer multiply it by 3
This graph the answer to your problem.
Zero pairs are generated by combining the EQUAL number of positive and negative numbers .
A zero pair could be -11 + 11
Option D should be your answer.
No combo of any of those angles add up to exactly 180 to suggest that they are parallel lines.
Let's first establish what we already know for this problem.
x = total number of hotdogs sold
y = total profit from total sales of hotdogs
Let's also establish the other equations which we will require in order to solve this problem.
Equation No. 1 -
Profit for 40 hotdogs = $90 profit
Equation No. 2 -
Profit for 80 hotdogs = $210 profit
STEP-BY-STEP SOLUTION
From this, we can use the formula y = mx + b & substitute the values for x & y from one of the two previous equations into the formula in order to obtain the values of m & b for the final equation. Here is an example of the working out as displayed below:
Firstly, using the first or second equation, we make either m or b the subject. Here I have used the first equation and made m the subject:
Equation No. 1 -
y = mx + b
90 = m ( 40 ) + b
40m = 90 - b
m = ( 90 - b ) / 40
Now, make b the subject in the second equation as displayed below:
Equation No. 2 -
y = mx + b
210 = m ( 80 ) + b
210 = 80m + b
b = 210 - 80m
Then, substitute m from the first equation into the second equation.
Equation No. 2 -
b = 210 - 80m
b = 210 - 80 [ ( 90 - b ) / 40 ]
b = 210 - [ 80 ( 90 - b ) / 40 ]
b = 210 - 2 ( 90 - b )
b = 210 - 180 - 2b
b - 2b = 30
- b = 30
b = - 30
Now, substitute b from the second equation into the first equation.
Equation No. 1 -
m = ( 90 - b ) / 40
m = ( 90 - ( - 30 ) / 40
m = ( 90 + 30 ) / 40
m = 120 / 40
m = 3
Through this, we have established that:
m = 3
b = - 30
Therefore, the final equation to model the final profit, y, based on the number of hotdogs sold, x, is as follows:
y = mx + b
y = ( 3 )x + ( - 30 )
ANSWER:
y = 3x - 30