Answer:
For your first question, Curium does not occur naturally on Earth, meaning that it is not produced naturally on Earth. However, it can be formed in nuclear reactors.
For your second question, Curium has been used to provide power to electrical equipment used on space missions, but doesn't seem to be that important overall.
Explanation:
Hope this helped!
You can determine the hazards of these chemicals by looking at their material data safety sheets (MSDS).
1. 0.1 M Ag⁺: Silver compounds are absorbed by skin causing bluish pigmentation. Thus, it <em>causes </em><span><em>staining on skin</em>.</span> Also, liquid <em>vapor may be irritating</em> to skin and also <em>moderately toxic when ingested</em>.
2. 0.1 M Ba²⁺: This is <em>mildly toxic when ingested</em> causing stomach irritation, muscle weakness, swelling of organs like brain, liver, kidney and heart.
3. 0.1 M Fe³⁺:Iron is <em>corrosive, has irritating vapor especially to the eyes, and toxic if ingested</em>.
4. 6 M HCl: This is a concentrated strong acid, so it is <em>corrosive, has irritating vapors, flammable and toxic when ingested</em>.
5. 6 M H₂SO₄: This is also a concentrated strong acid. Moreover, it is a strong oxidizing agent. So, its hazards include: <span><em>corrosive, has irritating vapors, toxic when ingested and causes staining on skin</em>.
</span>6. 6 M HNO₃: This is a concentrated strong acid, so it is <em>corrosive, has irritating vapors, flammable and toxic when ingested</em>.
7. 7.5 M NH₃: This is a weak base. It is characterized for its pungent odor. This is <em>corrosive, has irritating vapors, toxic if ingested, and flammable</em>.
Answer:
- Dipole interactions
- London dispersion forces
- Hydrogen bonds
Credit goes to: chem.libretexts.org
Answer:
![[CO]=[Cl_2]=0.01436M](https://tex.z-dn.net/?f=%5BCO%5D%3D%5BCl_2%5D%3D0.01436M)
![[COCl_2]=0.00064M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D0.00064M)
Explanation:
Hello there!
In this case, according to the given chemical reaction at equilibrium, we can set up the equilibrium expression as follows:
![K=\frac{[CO][Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BCO%5D%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Which can be written in terms of x, according to the ICE table:

Thus, we solve for x to obtain that it has a value of 0.01436 M and therefore, the concentrations at equilibrium turn out to be:
![[CO]=[Cl_2]=0.01436M](https://tex.z-dn.net/?f=%5BCO%5D%3D%5BCl_2%5D%3D0.01436M)
![[COCl_2]=0.015M-0.01436M=0.00064M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D0.015M-0.01436M%3D0.00064M)
Regards!
Answer:
Carbon forms the large numbers of compound due to the following reasons