Answer:
-100 kJ
Explanation:
We can solve this problem by applying the first law of thermodynamics, which states that:

where:
is the change in internal energy of a system
Q is the heat absorbed/released by the system (it is positive if absorbed by the system, negative if released by the system)
W is the work done by the system (it is positive if done by the system, negative if done on the system)
For the system in this problem we have:
W = +147 kJ is the work done by the system
Q = +47 kJ is the heat absorbed by the system
So , its change in internal energy is:

Intermolecular forces are the forces of attraction or repulsion which act between neighboring particles (atoms, molecules, or ions ). These forces are weak compared to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Answer:
<h2>
<em>no</em></h2>
Explanation:
<h2><u><em>
the particles in gas move so freely that it cannot have a definite density</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
moo</em></u></h2>
Answer:
D
Explanation:
I believe the answer is D.
Answer:
cold
Warm air lifted over a moving cold air mass will produce a _____ front.