C. Tripling the length and reducing the radius by a factor of 2 is the change to a pipe would increase the conductance by a factor of 12.
<u>Explanation:</u>
As we know that the resistance is directly proportional to the length of the pipe and it is inversely proportional to the cross sectional area of the pipe.
So it is represented as,
R∝ l /A [ area is radius square]
So k is the proportionality constant used.
R = kl/A
Conductance is the inverse of resistance, so it is given as,
C= 1/R.
R₁ = kl₁ / A₁
R₂ = kl₂/A₂
R₂/R₁ = 1/12 [∵ conductance is the inverse of resistance]
= l₂A₁ / l₁A₂
If we chose l₁/l₂= 3 and A₂/A₁= 4 So R₂/R₁= 1/3×4 = 1/12
So tripling the length and reducing the radius by a factor of 2 would increase the conductance by a factor of 12.
The answer is ammonium iron
Answer:
Hence the correct option is an option (b) Sr4, Cl,Br−,Na+.
Explanation:
Bromine and chlorine belong to an equivalent group. As we go down the group the dimensions increases which too there's a charge on the bromine atom. therefore the size of the Br- is going to be larger in comparison to the chlorine atom.
Sr atom is within the second group, and also it's below the above-mentioned atoms.so Sr is going to be the larger one among all the atoms.
Sodium and chlorine belong to an equivalent period .size decrease from left to right. but due to the charge on sodium its size decreases and there's an opportunity that Na+ size could be adequate for Cl.
Here we finally assume that two atoms are of an equivalent size (Na+ and Cl) which are less in size compared to the opposite two(Sr and Br-) during which one is greater (Sr)and the opposite is smaller(Br-).
Answer:
Sand
Explanation:
with salt distillation will work, heat the solution and collect the water in a seperate beaker
With sugar you do the same, boil away the water and collect the water vapour, you'll be left with sugar in the original container and water if you collected it
Use a fraction of column and heat the solution, the alcohol will be seperated out
Sand is the only one that uses mechanical filtration