First step in answering the question is to establish a balanced chemical reaction equation. More specifically, a combustion chemical equation.
CH4 + 2O2 ---> CO2 + 2H20
Then using dimension analysis:
<span>1. Which variable is the independent variable and which is the dependent variable? Density vs. ethylene glycol
The independent variable would be ethylene glycol and dependent variable would be density.
A. A 25-mL volumetric flask with its stopper has a mass of 32.6341 g. The same flask filled to the line with ethylene glycol (C2H6O2, automotive antifreeze) solution has a mass of 58.0091 g. What is the density of the ethylene glycol solution?
Density = 58.0091 - 32.6341 / .025 = 1015 g/L
B. What is the molarity of the ethylene glycol solution, if the mass of ethylene glycol in the solution is 12.0439 g?
Molarity = 12.0439 ( 1 mol / 62.07 g) / 0.025 = 7.8 M</span>
Answer:
When a low cost fuel is available, internal combustion drivers surpass all others in compactness and low cost of installation and operation. For example, gas compression on a large scale has long been done with integral engine compressors.
<h3>
Answer:</h3>
2.49 × 10⁻¹² moles Pb
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
1.50 × 10¹² atoms Pb
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
2.49087 × 10⁻¹² moles Pb ≈ 2.49 × 10⁻¹² moles Pb