Answer:
# In a familiar high-school chemistry demonstration, an instructor first uses electricity to split water into its constituent gases, Hydrogen and Oxygen. Then, by combining the two gases and igniting them with a spark, the instructor changes the gases back into water with a loud pop (That means the energy is released in the process).
# There are new other ways to produce water in laboratory, however, the scientists can not produce water in large quantity for the masses, because of some reasons.
1- Theoretically, this is possible, but it would be an extremely dangerous process. Since Hydrogen is extremely flammable and Oxygen supports combustion, it wouldn’t take much to create this force, but we also have an explosion. That’s why this process can be a deadly one if our experiment is big enough.
2- Personally, I think that it makes no sense to produce water in a laboratory ( or in a large plant) for people to use as daily water. The much more important thing we need to do is to save our environment, our planet Earth. Because the daily water people drink contains not just water molecules but other minerals, the marine life is depend not just in water molecules but diferent factors, etc.
Explanation:
This is just my personal opinion. Hope that can help you a little. Have a nice day
Answer:
a and d
Explanation:
a bromine and the calcium atom loses two elections
The correct answer is 12.044 × 10²³ molecules.
The molecular mass of H₂S is 34 gram per mole.
Number of moles is determined by using the formula,
Number of moles = mass/molecular mass
Given mass is 68 grams, so no of moles will be,
68/34 = 2 moles
1 mole comprises 6.022 × 10²³ molecules, therefore, 2 moles will comprise = 6.022 × 10²³ × 2
= 12.044 × 10²³ molecules.
One thing that does not change is the chemical composition of water, which is still H2O. And maybe mass, if all of the particles remain inside the beaker, which was never mentioned in the question so I am not sure.
Answer:
The first element in the periodic table is hydrogen.
Explanation:
Hydrogen has an atomic number of one, making it the first element of the periodic table. The atomic number of an element is just the number of protons in the nucleus, so hydrogen has one proton. The neutrons and electrons do not affect the atomic number. After hydrogen with one proton comes helium with two, lithium with three, beryllium with four, and so on.