Answer:
There are
rows in the theater.
Step-by-step explanation:
Given terms.
Seats in order
will form an Arithmetic progression.
As the common difference
,same for three consecutive terms so this an AP.
Now accordingly we can put the AP terms.
Total number of seats ![S_{n}=1560](https://tex.z-dn.net/?f=S_%7Bn%7D%3D1560)
Seats in the first row ![a=23](https://tex.z-dn.net/?f=a%3D23)
Seats in the last row ![l=81](https://tex.z-dn.net/?f=l%3D81)
Summation of
terms in AP![(S_{n})](https://tex.z-dn.net/?f=%28S_%7Bn%7D%29)
![S_n={\frac{n}{2}[2a+(n-1)d]}](https://tex.z-dn.net/?f=S_n%3D%7B%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D%7D)
OR
![S_n=\frac{n}{2}[a+l]](https://tex.z-dn.net/?f=S_n%3D%5Cfrac%7Bn%7D%7B2%7D%5Ba%2Bl%5D)
Using the second equation.
![S_n=\frac{n}{2}[a+l]](https://tex.z-dn.net/?f=S_n%3D%5Cfrac%7Bn%7D%7B2%7D%5Ba%2Bl%5D)
![1560=\frac{n}{2}[23+81]](https://tex.z-dn.net/?f=1560%3D%5Cfrac%7Bn%7D%7B2%7D%5B23%2B81%5D)
![n=\frac{2\times 1560}{23+81}=\frac{3120}{104}=30](https://tex.z-dn.net/?f=n%3D%5Cfrac%7B2%5Ctimes%201560%7D%7B23%2B81%7D%3D%5Cfrac%7B3120%7D%7B104%7D%3D30)
So the number of rows (n) in the theater ![=30](https://tex.z-dn.net/?f=%3D30)