1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga55 [171]
3 years ago
8

Which form of erosion has abrasion and deflation

Physics
1 answer:
mixer [17]3 years ago
8 0
The answer is Wind erosion
You might be interested in
A solid sphere of radius 40.0cm has a total positive charge of 26.0μC uniformly distributed throughout its volume. Calculate the
Rudiy27

The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C

R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Q\;(\text{total charge of the solid sphere})=(26\;\mathrm{\mu C})\left(\dfrac{1\;\mathrm{C}}{10^6\;\mathrm{\mu C}} \right)={26\times 10^{-6}\;\mathrm{C}}

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

E=\dfrac{Q}{4\pi\epsilon_0 r^2}

Substitute numerical values:

E&=\dfrac{24\times 10^{-6}}{4\pi (8.8542\times 10^{-12})(0.6)}\\ &={6.49\times 10^5\;\mathrm{N/C}\;\text{directed radially outward}}}

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.

As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).

Learn more about Gaussian sphere here:

brainly.com/question/2004529

#SPJ4

6 0
1 year ago
Consider a 100 g object dropped from a height of 1 m. Assuming no air friction (drag), when will the object hit the ground and a
Katyanochek1 [597]

Answer:

speed and time are Vf = 4.43 m/s and  t = 0.45 s

Explanation:

This is a problem of free fall, we have the equations of kinematics

      Vf² = Vo² + 2g x

As the object is released the initial velocity is zero, let's look at the final velocity with the equation

      Vf = √( 2 g X)

      Vf = √(2 9.8  1)

      Vf = 4.43 m/s

This is the speed with which it reaches the ground

 

Having the final speed we can find the time

      Vf = Vo + g t

       t = Vf / g

       t = 4.43 / 9.8

       t = 0.45 s

This is the time of fall of the body to touch the ground

3 0
3 years ago
Anger is to angry as fire is to what
finlep [7]
<span>Anger is to angry as fire is to blazing. </span>
4 0
2 years ago
What is work - energy theorem ??​
Elden [556K]

The work-energy theorem explains the idea that the net work - the total work done by all the forces combined - done on an object is equal to the change in the kinetic energy of the object. After the net force is removed (no more work is being done) the object's total energy is altered as a result of the work that was done.

This idea is expressed in the following equation:

is the total work done

is the change in kinetic energy

is the final kinetic energy

is the initial kinetic energy

mark me as brainliest ❤️

3 0
2 years ago
Read 2 more answers
Taylor mixes two liquids together in a beaker. A solid forms at the bottom of the beaker, and the liquid changes from pink to bl
Dimas [21]
It is a chemical change and a physical change
3 0
2 years ago
Other questions:
  • A student uses an electronic force sensor to study how much force the student’s finger can apply to a specific location. The stu
    12·2 answers
  • What is potential energy of a 10.0 kg weight suspended 3.0m above the ground?
    13·1 answer
  • In the mixtures lab, you waited to see if the liquid would form lumpy or fluffy masses, which would indicate it was a _____.
    5·2 answers
  • A 91.5 kg football player running east at 2.73 m/s tackles a 63.5 kg player running east at 3.09 m/s. what is their velocity aft
    15·1 answer
  • Now consider a different electromagnetic wave, also described by: Ex(z,t) = Eocos(kz - ω t + φ) In this equation, k = 2π/λ is th
    12·1 answer
  • A proton is located at the point (x = 1.0 nm, y = 0.0 nm) and an electron is located at the point (x = 0.0 nm, y = 4.0 nm). Find
    14·1 answer
  • Physics Help Please:
    12·2 answers
  • Bees obtain food they need from flowers. The flowers benefit by having their pollen dispersed by the bees as they travel from fl
    8·1 answer
  • How is physical change different from a chemical change?
    6·1 answer
  • A force of 8 N accelerates by 4 m/s^2. What would be the amount of force needed to give a final acceleration of 5.3 m/s^2
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!