Answer:

Explanation:
The electric field equation of a electromagnetic wave is given by:
(1)
- E(max) is the maximun value of E, it means the amplitude of the wave.
- k is the wave number
- ω is the angular frequency
We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).
By definition:
And the relation between λ and f is:




The angular frequency equation is:


![\omega=2.69*10^{15} [rad/s]](https://tex.z-dn.net/?f=%5Comega%3D2.69%2A10%5E%7B15%7D%20%5Brad%2Fs%5D)
Therefore, the E equation, suing (1), will be:
(2)
For the magnetic field we have the next equation:
(3)
It is the same as E. Here we just need to find B(max).
We can use this equation:



Putting this in (3), finally we will have:
(4)
I hope it helps you!
15 min
Explanation:
take 0.25 and put it in for 1.00 and you will see its 0.25 but when you add it all 4 times it is 1.00 so then you would take that and do it to the hour ... how many times does four go into 60
The radial velocity method preferentially detects large planets close to the central star
- what is the Radial velocity:
The radial velocity technique is able to detect planets around low-mass stars, such as M-type (red dwarf) stars.
This is due to the fact that low mass stars are more affected by the gravitational tug of planets.
When a planet orbits around a star, the star wobbles a little.
From this, we can determine the mass of the planet and its distance from the star.
hence we can say that,
option D is correct.
The radial velocity method preferentially detects large planets close to the central star
Learn more about radial velocity here:
<u>brainly.com/question/13117597</u>
#SPJ4
Answer:F=4F
Explanation: Columbs law states that The force between the two point charges is directly proportional to the product of charges and inversely proportional to the square of distance between them
Force between the two charges is given by
F=K*q1*q2/r^2
if one charge become 4 times, new force is,
F=4(K*q1*q2)/r^2
F=4F
Where q1 and q2 are the point charges
r is the distance between the two charges
K is a constant of proportion called electrostatic force