Answer:
The velocity of the cart at the bottom of the ramp is 1.81m/s, and the acceleration would be 3.30m/s^2.
Explanation:
Assuming the initial velocity to be zero, we can obtain the velocity at the bottom of the ramp using the kinematics equations:

Dividing the second equation by the first one, we obtain:

And, since
, then:

It means that the velocity at the bottom of the ramp is 1.81m/s.
We could use this data, plus any of the two initial equations, to determine the acceleration:

So the acceleration is 3.30m/s^2.
Answer:
Josh is the strongest
The net force is 5N towards right
Explanation:
(4566 m / 4 min) × (1 km / 1000 m) × (60 min / h) = 68.49 km/h
Answer:
The minimum distance in which the car will stop is
x=167.38m
Explanation:

∑F=m*a
∑F=u*m*g
The force of friction is the same value but in different direction of the force moving the car so it can stop so


