Answer:
There are 0,2 moles of gas that ocuppy the container.
Explanation:
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol. Firs we convert the unit of temperature in Celsius into Kelvin:
0°C= 273 K ------> 45,6 °C= 273 + 45, 6= 318, 6 K
PV= nRT ---> n= PV/RT
n= 1,48 atm x 3,45 L /0.082 l atm / K mol x 318,6 K
n= 0,195443479 mol
Yes if you add an energy to an electron the electron will become excited, and it will jump to its highest level then go back down releasing energy
Answer:
Na+Cl- + Ag+no3- ---> Na+No3- + Ag+Cl-
A spectator ion is an ion that exists as a reactant and a product in a chemical equation
Explanation:
When a solution of sodium hydroxide, NaOH, is mixed with hydrochloric acid, HCl, the compounds dissociate into the ions Na+, OH-, H+ and Cl-. The hydrogen and hydroxide ions react to form water, but the sodium and chlorine ions stay in solution unchanged.
Answer:
0.32 M
Explanation:
Step 1: Write the balanced reaction at equilibrium
Ag₂S(s) ⇌ 2 Ag⁺(aq) + S²⁻(aq)
Step 2: Calculate the concentration of Ag⁺ at equilibrium
We will use the formula for the concentration equilibrium constant (Keq), which is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It only includes gases and aqueous species.
Keq = [Ag⁺]² × [S²⁻]
[Ag⁺] = √{Keq / [S²⁻]}
[Ag⁺] = √{2.4 × 10⁻⁴ / 0.0023} = 0.32 M