Answer: An 8 kg book at a height of 3 m has the most gravitational potential energy.
Explanation:
Gravitational potential energy is the product of mass of object, height of object and gravitational field.
So, formula to calculate gravitational potential energy is as follows.
U = mgh
where,
m = mass of object
g = gravitational field = 
h = height of object
(A) m = 5 kg and h = 2m
Therefore, its gravitational potential energy is calculated as follows.

(B) m = 8 kg and h = 2 m
Therefore, its gravitational potential energy is calculated as follows.

(C) m = 8 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

(D) m = 5 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

Thus, we can conclude that an 8 kg book at a height of 3 m has the most gravitational potential energy.
It is a chemical change and a physical change
They differ from each other<span> in wavelength. Wavelength is the distance between </span>one wave<span> crest to the next. </span>Waves<span> in the </span>electromagnetic<span> spectrum vary in size from very long radio </span>waves<span> the size of buildings, to very short gamma-rays smaller </span>than<span> the size of the nucleus of an atom.</span>
Answer:
In the picture.
Explanation:
I hope that it's a clear solution.
Initial velocity = 
acceleration in the downward direction = -9.8 
Final velocity at the highest point = 0
Maximum height reached = 0.410 m
Now, Using third equation of motion:




Speed with which the flea jumps = 