Answer:
c. 
Explanation:
= Initial distance between asteroid and rock = 7514 km = 7514000 m
= Final distance between asteroid and rock = 2823 km = 2823000 m
= Initial speed of rock = 136 ms⁻¹
= Final speed of rock = 392 ms⁻¹
= mass of the rock
= mass of the asteroid
Using conservation of energy
Initial Kinetic energy of rock + Initial gravitational potential energy = Final Kinetic energy of rock + Final gravitational potential energy

Structural constraint is the answer :)
Answer:
Uniform rectilinear movement (m. r. u.)
Explanation:
It is a continuous movement without acceleration, that is, it moves at a constant speed. The speed does not change over time, for this reason, there is no change in acceleration.
Vf = final velocity = 50/30 [km/s] = 1.67 [km/s]
Vo = initial velocity = 50/30 [km/s] = 1.67 [km/s]
Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m
For E = 200 gpa and i = 65. 0(106) mm4, the slope of end a of the cantilevered beam is mathematically given as
A=0.0048rads
<h3>What is the slope of end a of the cantilevered beam?</h3>
Generally, the equation for the is mathematically given as

Therefore
A=\frac{10+10^2+3^2}{2*240*10^9*65*10^6}+\frac{10+10^3*3}{240*10^9*65*10^{-6}}
A=0.00288+0.00192=0.0048rads
A=0.0048rads
In conclusion, the slope is
A=0.0048rads
Read more about Graph
brainly.com/question/14375099