Answer:
V = 10.88 m/s
Explanation:
V_i =initial velocity = 0m/s
a= acceleration= gsinθ-
cosθ
putting values we get
a= 9.8sin25-0.2cos25= 2.4 m/s^2
v_f= final velocity and d= displacement along the inclined plane = 10.4 m
using the equation


v_f= 7.04 m/s
let the speed just before she lands be "V"
using conservation of energy
KE + PE at the edge of cliff = KE at bottom of cliff
(0.5) m V_f^2 + mgh = (0.5) m V^2
V^2 = V_f^2 + 2gh
V^2 = 7.04^2 + 2 x 9.8 x 3.5
V = 10.88 m/s
Answer: Option (A) is the correct answer.
Explanation:
A corrective action is defined as the action with the help of which a person can avoid a difficulty or problem that he/she was facing earlier.
For example, when the chef checked the temperature of soup using thermometer then it was 120 but his operation's critical limit was 135.
So, to avoid this problem he heated the soup to 165 at 15 seconds following which he got the result as desired.
Therefore, reheating the soup was his corrective action.
Thus, we can conclude that reheating the soup was the corrective action.
Answer: 5.79 s
Explanation:
Vs=0 m/s starting speed(from rest)
Vf=325 km/h= 325*1000/3600= 90.28 m/s
a=15.6m/s²
Using equation for acceleration we can find out time :
a=(Vf-Vs)/t
t=(Vf-Vs)/a
t=(90.28 m/s-0m/s)/15.6 m/s²
t=5.79 s