Answer: Radiation
Explanation:
There are three ways in which the thermal transfer occurs:
1. By Conduction, when the transmission is by the <u>direct contact</u>.
2. By Convection, heat transfer <u>in fluids </u>(like water or the air, for example).
3. By Radiation, by the <u>electromagnetic waves</u> (they can travel through any medium and in <u>vacumm</u>)
So, in the outter space is vacuum, this means the energy cannot be transmitted by convection, nor conduction. It must be transmitted by electromagnetic waves that are able to travel with or without a medium, and this is called radiation.
As we know that time period of simple pendulum is given as
T = 2π √L/g
here we know that
T = 3.8 s
now from above equation we know that
T² = 4π² (L/g)
now on rearranging the above equation we will have
L = gT² / 4π²
now plug in all data into it
L = (9.8) (3.8)² / (4) (3.14)²
so the length of the cable must be 3.6 m
Answer:
Explanation:
refractive index of ember = sin of angle of incidence / sin of angle of refraction
= sin 35 / sin24
= .5735 / .4067
= 1.41
This is refractive index of ember with respect to water
refractive index of ember with respect to water
= wμe = μe / μw
μe = wμe x μw
= 1.33 x 1.41
= 1.87
refractive index of ember with respect to air = 1.87 .
Answer:
The speed with which the man flies forward is 5.5 m/s
Explanation:
The mass of the man = 100 kg
The mass of the scooter = 10 kg
The speed with which the man was traveling on the scooter = 5 m/s
The speed of the scooter after it hits the rock = 0 m/s
Let v represent the speed with which the man flies forward
The formula for momentum, P, is P = Mass × Velocity
The conservation of linear momentum principle is, the total initial momentum = The total final momentum, therefore, we have;
The total initial momentum = (100 kg + 10 kg) × 5 m/s = 550 kg·m/s
The total final momentum = 100 kg × v + 10 kg × 0 m/s = 100 kg × v
When the momentum is conserved, we have;
550 kg·m/s = 100 kg × v
∴ v = 550 kg·m/s/(100 kg) = 5.5 m/s.
The speed with which the man flies forward = v = 5.5 m/s
It’s coming in contact with more air molecules than I would if it was in a ball because there is less surface area