27 divided by 55= 0.490909 repeating
Step by Step Explanation:
picture below
Answer:
WE HAVE FIND HOW MUCH MAY TIME BIGGER IS THE VOLUME OF PYRAMID B THAN PYRAMID A.
The answer is 32 times
Step-by-step explanation:
Volume of Pyramid B = 3136 in³
Volume of Pyramid A = ?
We have to find volume of Pyramid A. As Pyramid is a square pyramid, its volume is given as:

where b = base = 7 and h = height = 6. Substitute the values:

Volume of Pyramid A = 98 in³
To find how many time B is bigger than A, divide volume of B by A:

So, volume of Pyramid B is 32 times bigger than volume of Pyramid A
Answer:
Sam has $900 more money. In total he now has $905.
Answer: The given logical equivalence is proved below.
Step-by-step explanation: We are given to use truth tables to show the following logical equivalence :
P ⇔ Q ≡ (∼P ∨ Q)∧(∼Q ∨ P)
We know that
two compound propositions are said to be logically equivalent if they have same corresponding truth values in the truth table.
The truth table is as follows :
P Q ∼P ∼Q P⇔ Q ∼P ∨ Q ∼Q ∨ P (∼P ∨ Q)∧(∼Q ∨ P)
T T F F T T T T
T F F T F F T F
F T T F F T F F
F F T T T T T T
Since the corresponding truth vales for P ⇔ Q and (∼P ∨ Q)∧(∼Q ∨ P) are same, so the given propositions are logically equivalent.
Thus, P ⇔ Q ≡ (∼P ∨ Q)∧(∼Q ∨ P).