Answer:
pH = 1.95
Explanation:
For polyprotic acids, it is generally assumed that all H⁺ comes from the 1st ionization step. The amount of H⁺ delivered into solution for the 2nd and 3rd ionization steps are in the order of 10⁻⁴M and 10⁻⁶M respectively and provide very little change in pH from the quantity delivered in the 1st ionization step.
Therefore... the [H⁺] concentraion and pH are computed as follows...
[H⁺] = √Ka₁[H₃AsO₄] = √(2.5 x 10⁻⁴)(0.500) M = 0.1118M
pH = -log[H⁺] = -log(0.01118) = 1.95
Answer: The potential of the following electrochemical cell is 1.08 V.
Explanation:
=-0.74V[/tex]
=0.34V[/tex]
The element with negative reduction potential will lose electrons undergo oxidation and thus act as anode.The element with positive reduction potential will gain electrons undergo reduction and thus acts as cathode.
Here Cr undergoes oxidation by loss of electrons, thus act as anode. copper undergoes reduction by gain of electrons and thus act as cathode.


Where both
are standard reduction potentials, when concentration is 1M.
![E^0=E^0_{[Cu^{2+}/Ni]}- E^0_{[Cr^{3+}/Cr]}](https://tex.z-dn.net/?f=E%5E0%3DE%5E0_%7B%5BCu%5E%7B2%2B%7D%2FNi%5D%7D-%20E%5E0_%7B%5BCr%5E%7B3%2B%7D%2FCr%5D%7D)

Thus the potential of the following electrochemical cell is 1.08 V.
The biggest reason is radioactive wastes. Nuclear power generated radioactive wastes like Uranimum, plutonium and amercium that inhibits gene expression and causes cancer to the environment. Nuclear plants use to release these wastes into the oceans, and it causes fishes to exhibit gender change, 3 eyes, 2 tails etc. The impact on human shows signs of serious blood, liver and lung cancers.
There are currently no way to get rid of these wastes as they take hundred thousands of years to decompose.
Another reason is they cause a small amount of green gas emission. Releases CO2 to the sky. They exhibit radioactive gas emission as well (causes cancer) .
When a water vapor condenses, heat is being released from the process. This heat is called latent heat of vaporization since the phase change happens without any change in the temperature. This value is constant per mole of a substance as a function of pressure and temperature. For this problem, we are given the heat of vaporization at a certain T and P. We use this value to calculate the total heat released from the process. We calculate as follows:
Total heat released: 32.4 g ( 1 mol / 18.02 g ) (40.67 kJ / mol) = 73.12 kJ
Therefore, 73.12 kJ of heat is released from the condensation of 32.4 g of water vapor.