the answer is “s = 10w + 35” since he already has 35 but needs to find out how many weeks he washed the dishes :))
First, by using the distance formula for just one side, we can find the length of all sides (a square has 4 equal sides.) Then, we can apply the area of a square formula, which is a^2.
Distance formula:

√((-2 + 5)^2 + (-8 + 4)^2)
√((3)^2 + (4)^2)
√9 + 16
√25
5
The side lengths of the square are each equal to 5, and by applying the formula for area, we can find the area of the square.
5^2 = 25
<h3>The area is 25.</h3>
1 whole pizza is equal to 8/8. If Louis eats 6/8 then there should be 2/8 left, if your teacher wants it simplified then you will divide both the numerator and the denominator by 2 giving you a fraction of 1/4.
Transitive property I believe
Answer:
Ecuaciones algebraicas. De primer grado o lineales. De segundo grado o cuadráticas...
Ecuaciones trascendentes, cuando involucran funciones no polinómicas, como las funciones trigonométricas, exponenciales, logarítmicas, etc.
Ecuaciones diferenciales. Ordinarias...
Ecuaciones integrales.
Ecuaciones funcionales.
Hope this helps! :)