Answer : Option (A) Accelerator 2 model has the lowest percentage of energy lost as waste.
Solution : Given,
For Accelerator 1 model,
Input energy = 2078.3 J
Wasted energy = 663.1 J
Output energy = 1415.2 J
For Accelerator 2 model,
Input energy = 7690.0 J
Wasted energy = 2337.5 J
Output energy = 5353.5 J
For Accelerator 3 model,
Input energy = 4061.9 J
Wasted energy = 2259.6 J
Output energy = 1802.3 J
Formula used for lowest percentage of energy lost as waste is:
% energy lost as waste = (Total energy wasted / Total input energy ) × 100
For Accelerator 1 model,
% energy lost as waste =
= 31.90%
For Accelerator 2 model,
% energy lost as waste =
= 30.39%
For Accelerator 3 model,
% energy lost as waste =
= 55.62%
So, we conclude that the Accelerator 2 model has the lowest percentage of energy lost as waste.
Answer:
A) Glass
Explanation:
Glass is a conductor, so it allows heat to go through it (Ex. Touching a pie pan that came right out of the oven)
Rubber is an insulator, so heat has a hard time passing through (Ex. Using a rubber grip on a cast iron pan.
Cloth is also an insulator, so heat has a hard time passing through (Ex. Using a pot holder to prevent the counter from getting scarred)
Wood is also an insulator, so heat has a hard time passing through (Ex. Bedding for a rabbit hutch)
Hope this helps!!
Answer:
Explanation: I also have a question if anyone can help in chem please
Answer:
1.263 moles of HF
Explanation:
The balance chemical equation for given single replacement reaction is;
Sn + 2 HF → SnF₂ + H₂
Step 1: <u>Calculate Moles of Tin as;</u>
As we know,
Moles = Mass / A.Mass ----- (1)
Where;
Mass of Tin = 75.0 g
A.Mass of Tin = 118.71 g/mol
Putting values in eq. 1;
Moles = 75.0 g / 118.71 g/mol
Moles = 0.6318 moles of Sn
Step 2: <u>Find out moles of Hydrogen Fluoride as;</u>
According to balance chemical equation,
1 mole of Sn reacted with = 2 moles of HF
So,
0.6318 moles of Sn will react with = X moles of HF
Solving for X,
X = 0.6318 mol × 2 mol / 1 mol
X = 1.263 moles of HF
Correct Answer: option <span>(1) Mn(s)
Reason:
The </span><span>spontaneity of electrochemical cell, depends on the it's Eo value. Electrochemical cells with positve Eo are spontanous and vice-versa.
</span>
In present case, the Eo of half-cell of interest are as follows:
Eo Zn2+/Zn = <span>-0.763v
</span>Eo Mg2+/Mg = 2.37v
Eo Mn2+/Mn = -1.18v
Therefore, Eo cell (with Zn as one of the half-cell) = Eo Zn2+/Zn - Eo Mn2+/Mn
= -0.763 - (-1.18)
= 0.417v
On other hand, Eo cell (with Mg as one of the half-cell) = Eo Mg2+/Zn - Eo Mn2+/Mn
= -2.37 - (-1.18)
= -1.19v
Thus, Mn(s) <span>metal will spontaneously react with Zn2+(aq), but will not spontaneously react with Mg2+(aq)</span>