Zinc would be considered the strongest reducing agent.
<h3>Reducing agent</h3>
A reducing agent is a chemical species that "donates" one electron to another chemical species in chemistry (called the oxidizing agent, oxidant, oxidizer, or electron acceptor). Earth metals, formic acid, oxalic acid, and sulfite compounds are a few examples of common reducing agents.
Reducers have excess electrons (i.e., they are already reduced) in their pre-reaction states, whereas oxidizers do not. Usually, a reducing agent is in one of the lowest oxidation states it can be in. The oxidation state of the oxidizer drops while the oxidizer's oxidation state, which measures the amount of electron loss, increases. The agent in a redox process whose oxidation state rises, which "loses/donates electrons," which "oxidizes," and which "reduces" is known as the reducer or reducing agent.
Learn more about reducing agent here:
brainly.com/question/2890416
#SPJ4
<h3 />
Answer: Hợp chất CTHH 0 °C 10 °C 20 °C 30 °C 40 °C 50 °C 70 °C
Actini(III) hydroxide Ac(OH)3 0,0022
Amonia NH3 1176 900 702 565 428 333 188
Amoni azua NH4N3 16 25,3 37,1
View 42 more rows
hehe
Answer: solid
Explanation: Chemical reactions are those which involve rearrangement of atoms.
Chemical changes are accompanied by following changes:
1) Absorption or release of heat
2) Change in color
3) Formation of gas bubbles
4) Formation of a solid product called as precipitate
Example of formation of precipitate or solid in chemical reaction:
A large atom means that the radius would be large, meaning that the effective nuclear charge is low, therefore a lower electronegativity based on the periodic table. A smaller atom would mean the opposite, therefore a higher electronegativity. This combination would mean that the new molecule is polar.
Also, to answer your question, it would be most likely different from both atoms, as size doesn't really matter in a compound's properties.
Answer:
Explanation:
Oxygen is one of the most abundant elements on this planet. Our atmosphere is 21% free elemental oxygen. Oxygen is also extensively combined in compounds in the earths crust, such as water (89%) and in mineral oxides. Even the human body is 65% oxygen by mass.
Free elemental oxygen occurs naturally as a gas in the form of diatomic molecules, O2 (g). Oxygen exhibits many unique physical and chemical properties. For example, oxygen is a colorless and odorless gas, with a density greater than that of air, and a very low solubility in water. In fact, the latter two properties greatly facilitate the collection of oxygen in this lab. Among the unique chemical properties of oxygen are its ability to support respiration in plants and animals, and its ability to support combustion.
In this lab, oxygen will be generated as a product of the decomposition of hydrogen peroxide. A catalyst is used to speed up the rate of the decomposition reaction, which would otherwise be too slow to use as a source of oxygen. The catalyst does not get consumed by the reaction, and can be collected for re-use once the reaction is complete. The particular catalyst used in this lab is manganese(IV) oxide.