Answer with Step-by-step explanation:
We are given that a matrix
![A=\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%261%5C%5C1%260%260%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
a.We have to find characteristic polynomial in terms of A
We know that characteristic equation of given matrix
Where I is identity matrix of the order of given matrix
I=![\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
Substitute the values then, we get




Hence, characteristic polynomial =
b.We have to find the eigen value for given matrix

Then , we get 

Hence, real eigen values of for the matrix are 0,0 and 1.
c.Eigen space corresponding to eigen value 1 is the null space of matrix 

![A-I=\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&-1\end{array}\right]](https://tex.z-dn.net/?f=A-I%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%261%5C%5C1%26-1%260%5C%5C0%260%26-1%5Cend%7Barray%7D%5Cright%5D)
Apply 
![A-I=\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A-I%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%261%5C%5C1%26-1%260%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
Now,(A-I)x=0[/tex]
Substitute the values then we get
![\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&0\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=0](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%261%5C%5C1%26-1%260%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_1%5C%5Cx_2%5C%5Cx_3%5Cend%7Barray%7D%5Cright%5D%3D0)
Then , we get 
And

Null space N(A-I) consist of vectors
x=![\left[\begin{array}{ccc}x_1\\x_1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_1%5C%5Cx_1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
For any scalar 
![x=x_1\left[\begin{array}{ccc}1\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=x%3Dx_1%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
![E_1=N(A-I)=Span(\left[\begin{array}{ccc}1\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=E_1%3DN%28A-I%29%3DSpan%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Hence, the basis of eigen vector corresponding to eigen value 1 is given by
![\left[\begin{array}{ccc}1\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Eigen space corresponding to 0 eigen value
![N(A-0I)=\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=N%28A-0I%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%261%5C%5C1%260%260%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=0](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%261%5C%5C1%260%260%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_1%5C%5Cx_2%5C%5Cx_3%5Cend%7Barray%7D%5Cright%5D%3D0)
![\left[\begin{array}{ccc}x_1+x_3\\x_1\\0\end{array}\right]=0](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_1%2Bx_3%5C%5Cx_1%5C%5C0%5Cend%7Barray%7D%5Cright%5D%3D0)
Then, 

Substitute
Then, we get 
Therefore, the null space consist of vectors
![x=x_2=x_2\left[\begin{array}{ccc}0\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=x%3Dx_2%3Dx_2%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Therefore, the basis of eigen space corresponding to eigen value 0 is given by
![\left[\begin{array}{ccc}0\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)