<h3>
Answer: 12 inches</h3>
=============================================================
Explanation:
Notice the double tickmarks on segments WZ and ZY. This tells us the two segments are the same length. Let's say they are m units long, where m is a placeholder for a positive number.
That would mean m+m = 2m represents the length of segment WY, but that's equal to 10 as the diagram shows. We have 2m = 10 lead to m = 5 after dividing both sides by 2.
We've shown that WZ and ZY are 5 units long each. In short, we just cut that length of 10 in half.
-----------------------------------
Let's focus on triangle XYZ. This is a right triangle with legs XZ = unknown and ZY = 5. The hypotenuse is XY = 13.
We'll use the pythagorean theorem to find XZ
a^2 + b^2 = c^2
(XZ)^2 + (ZY)^2 = (XY)^2
(XZ)^2 + (5)^2 = (13)^2
(XZ)^2 + 25 = 169
(XZ)^2 = 169-25
(XZ)^2 = 144
XZ = sqrt(144)
XZ = 12
Segment XZ is 12 inches long.
Answer:
x-intercepts = 1,2, and 4, y-intercept = -8
Step-by-step explanation:
x^3 - 7x^2 - 14x - 8 in factored form is equal to (x-1)(x-2)(x-4).
Solving for x-intercepts:
- We are actually able to solve for all x-intercepts without the given factor. But since we are given one of the factors, our job becomes much easier.
- Using synthetic division, or long division, we factor out the x-intercept 4. Which leaves us with the polynomial x^2 - 3x + 2.
- From here we can separate the polynomial into two binomials.
- x^2 - 3x + 2 = (x-1)(x-2). Giving us all 3 x-intercepts.
- Using Descartes' rules we can identify before even starting the problem how many real x-intercepts there are (Not needed for this problem).
Solving for y-intercept:
- The y-intercept is always the coefficient that does not have any assigned x-variables.
- The coefficient is -8, thus the y-intercept.
- If unsure of the y-intercept, you can always plug in x = 0. Solving for the y-intercept will give you the value of f(0).
- If there is no coefficient, the y-intercept is equal to zero.
Since
(density = mass/volume), we can get the mass/weight of the liquid by integrating the density
over the interior of the tank. This is done with the integral

which is more readily computed in cylindrical coordinates as

The answer is <span>π8^2 or about 201.06</span>
Answer:
answer is not there answer is 64in^2
Step-by-step explanation: