1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BabaBlast [244]
3 years ago
15

Can you see attachment below

Mathematics
2 answers:
padilas [110]3 years ago
8 0

Answer:

yes

Step-by-step explanation:

Kaylis [27]3 years ago
7 0
Yess I can seee the attendees
You might be interested in
Consider the sequence:<br> 1536,768, 384, 192,96, ---<br> Determine the 11th term of the sequence.
Naya [18.7K]

Answer:

1.5

Step-by-step explanation:

Note there is a common ratio between consecutive terms, that is

768 ÷ 1536 = 0.5

384 ÷ 768 = 0.5

192 ÷ 384 = 0.5

96 ÷ 192 = 0.5

This indicates that the terms form a geometric sequence with

a_{n} = a(r)^{n-1}

where a is the first term and r the common ratio

Here a = 1536 and r = 0.5, thus

a_{11} = 1536 × (0.5)^{10} = 1.5

7 0
3 years ago
Read 2 more answers
An athlete eats 65 grams of protein per day while training. How much is this in milligrams
spayn [35]
65 grams=65,000 miligrams
5 0
2 years ago
Read 2 more answers
Robert's car uses 5 gallons of gas to cover 170 miles. At this rate, how many gallons will he need for a 255-mile trip?
Talja [164]
170/5 = 34 mi/gallon
255/34 = 7.5 gallons
4 0
3 years ago
Mr. Smith Junior wishes to buy a used car in a year's time when he turns 18, and he is willing to spend $5,000. He plans to work
ArbitrLikvidat [17]
This will be a additional Price = $282.51 Time  to maturity = 10 years Annual payment = $50 <span>Rate of the Return = 12%   


                                      Hope This helps!</span>
5 0
3 years ago
Beads are dropped to create a conical pile such that the ratio of its radius to the height of the pile is constant at 2:3 and th
pav-90 [236]

Answer:

\displaystyle \frac{dh}{dt} = \frac{1}{20 \pi} \ cm/s

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Equality Properties

<u>Geometry</u>

  • Volume of a Cone: \displaystyle V = \frac{1}{3} \pi r^2h

<u>Calculus</u>

Derivatives

Derivative Notation

Differentiating with respect to time

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \frac{r}{h} = \frac{2}{3} \\\frac{dV}{dt} = 5 \ cm^3/s\\h = 15 \ cm<u />

<u />

<u>Step 2: Rewrite Cone Volume Formula</u>

<em>Find the volume of the cone with respect to height.</em>

  1. Define ratio:                         \displaystyle \frac{r}{h} = \frac{2}{3}
  2. Isolate <em>r</em>:                               \displaystyle r = \frac{2}{3} h
  3. Substitute in <em>r</em> [VC]:             \displaystyle V = \frac{1}{3} \pi (\frac{2}{3}h)^2h
  4. Exponents:                          \displaystyle V = \frac{1}{3} \pi (\frac{4}{9}h^2)h
  5. Multiply:                               \displaystyle V = \frac{4}{27} \pi h^3

<u>Step 3: Differentiate</u>

  1. Basic Power Rule:                                                                                          \displaystyle \frac{dV}{dt} = \frac{4}{27} \pi \cdot 3 \cdot h^{3-1} \cdot \frac{dh}{dt}
  2. Simplify:                                                                                                           \displaystyle \frac{dV}{dt} = \frac{4}{9} \pi h^{2} \frac{dh}{dt}

<u>Step 4: Find Height Rate</u>

<em>Find dh/dt.</em>

  1. Substitute in known variables:                                                                      \displaystyle 5 \ cm^3/s = \frac{4}{9} \pi (15 \ cm)^{2} \frac{dh}{dt}
  2. Isolate <em>dh/dt</em>:                                                                                                   \displaystyle \frac{5 \ cm^3/s}{\frac{4}{9} \pi (15 \ cm)^{2} } = \frac{dh}{dt}
  3. Rewrite:                                                                                                           \displaystyle \frac{dh}{dt} = \frac{5 \ cm^3/s}{\frac{4}{9} \pi (15 \ cm)^{2} }
  4. Evaluate Exponents:                                                                                      \displaystyle \frac{dh}{dt} = \frac{5 \ cm^3/s}{\frac{4}{9} \pi (225 \ cm^2) }
  5. Evaluate Multiplication:                                                                                  \displaystyle \frac{dh}{dt} = \frac{5 \ cm^3/s}{100 \pi cm^2 }
  6. Simplify:                                                                                                          \displaystyle \frac{dh}{dt} = \frac{1}{20 \pi} \ cm/s
3 0
2 years ago
Other questions:
  • PLEASE ANSWER. QUESTION ABOUT GRAPHS.
    8·1 answer
  • An object moves at a constant rate. The graph shows the object's height at different times. Which equation represents the situat
    9·2 answers
  • If jeannie eats 1,840 calories a day ,how many calories will she have eaten after 182 days?
    8·2 answers
  • Semielliptical Arch Bridge An arch for a bridge over a highway is in the form of half an ellipse. The top of the arch is 20 feet
    15·1 answer
  • 17,254 to the nearest 1000
    14·2 answers
  • Write an equation in point-slope form of the line that passes through the two points given. Use the
    9·1 answer
  • If the edges of a cube are doubled in length to produce a new, larger cube, then the
    8·1 answer
  • Twice a number divided by 5 gives 4<br><br>simple equations<br><br>​
    11·2 answers
  • 1. 10^7 = 10,000,000​
    10·1 answer
  • An airplane flies at a constant speed of 760 miles per hour. How long will it take to travel a distance of 3040 miles?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!