Answer:
a) 0.70
b) 0.82
Step-by-step explanation:
a)
Let M be the event that student get merit scholarship and A be the event that student get athletic scholarship.
P(M)=0.3
P(A)=0.6
P(M∩A)=0.08
P(not getting merit scholarships)=P(M')=?
P(not getting merit scholarships)=1-P(M)
P(not getting merit scholarships)=1-0.3
P(not getting merit scholarships)=0.7
The probability that student not get the merit scholarship is 70%.
b)
P(getting at least one of two scholarships)=P(M or A)=P(M∪A)
P(getting at least one of two scholarships)=P(M)+P(A)-P(M∩A)
P(getting at least one of two scholarships)=0.3+0.6-0.08
P(getting at least one of two scholarships)=0.9-0.08
P(getting at least one of two scholarships)=0.82
The probability that student gets at least one of two scholarships is 82%.
Answer:
125
Step-by-step explanation:
Answer:
I'm not sure what your asking, but, no, all rectangles are parallelograms.
I found this over the internet, and I hope it helps you understand why a rectangle is always a parallelogram, but a parallelogram is not always a rectangle:
It is true that every rectangle is a parallelogram, but it is not true that every parallelogram is not a rectangle. For instance, take a square. It's a parallelogram — it is a quadrilateral with two pairs of parallel faces. But it is also a rectangle — it is a quadrilateral with four right angles.