Volume=lengthXwidthXheight
far left— 8x8x20= 1280ft^3
middle— 60-8=52-20=32 so you find out the length of just that piece of solid
20-12=8 to find out width
8x8x32=2048ft^3
far right— 20x15x8=2400ft^3
volume of whole shape- add each value together 1280+2048+2400=5728ft^3
volume= measurement^3
Answer: D
Step-by-step explanation: Just took the test
Answer:
Step-by-step explanation:
In standard form this could be rewritten as | b - 0 | > 6, which in words, says,
"b is greater than 6 units away from 0 on a number line". If b is greater than 6 units away, both positive 6 and negative 6 are 6 units away from 0. Because the values we need are greater than 6 units away from 0, we are starting at both 6 and -6 and moving away from 0.
The "greater than" symbol indicates that this is a disjunction so the word "or" is used as opposed to in a conjunction where the word "and" is used.
Therefore, our solutions are
b < -6 or b > 6, the 3rd choice down
Answer:
the answer is X<5/3 correct me if i'm wrong
Step-by-step explanation:
hope this helps
Answer:
x = -1
x = 5
Step-by-step explanation:
Use pythagorean theorem: a² + b² = c²
x² + (2x + 2)² = (2x + 3)²
Since these are quantities, you'll have to make them into quadratic equations.
(2x + 2)(2x + 2) = 4x² + 4x + 4x + 4
(2x + 3)(2x + 3) = 4x² + 6x + 6x + 9
x² + 4x² + 4x + 4x + 4 = 4x² + 6x + 6x + 9
Combine like terms
5x² + 8x + 4 = 4x² + 12x + 9
Move one side to set the equation equal to 0
x² - 4x - 5 = 0
Solve
x² - 5x + x - 5 = 0
x(x - 5) + 1(x - 5) = 0
(x + 1)(x - 5) = 0
x = -1, 5
<em>We</em><em> </em><em>can</em><em> </em><em>check</em><em> </em><em>that</em><em> </em><em>these</em><em> </em><em>are</em><em> </em><em>correct</em><em> </em><em>by</em><em> </em><em>plugging</em><em> </em><em>them</em><em> </em><em>in</em><em> </em><em>for</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>seeing</em><em> </em><em>if</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>equal</em>
<em>For</em><em> </em><em>example</em>
<em>(</em><em>-1</em><em>)</em><em>²</em><em> </em><em>+</em><em> </em><em>(</em><em>2</em><em>(</em><em>-1</em><em>)</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em>²</em><em> </em><em>=</em><em> </em><em>(</em><em>2</em><em>(</em><em>-1</em><em>)</em><em> </em><em>+</em><em> </em><em>3</em><em>)</em><em>²</em>
<em>1</em><em> </em><em>=</em><em> </em><em>1</em>