The question is what numbers satisfy A ∩ C.
The symbol ∩ means intersection, .i.e. you need to find the numbers that belong to both sets A and C. Those numbers might belong to the set C or not, because that is not a restriction.
Then lets find the numbers that belong to both sets, A and C.
Set A: perfect squares from A to 100:
1^2 = 1
2^2 = 4
3^2 = 9
4^2 = 16
5^2 = 25
6^2 = 36
7^2 = 49
8^2 = 64
9^2 = 81
10^2 = 100
=> A = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
Set C: perfect fourths
1^4 = 1
2^4 = 16
3^4 = 81
C = {1, 16, 81?
As you see, all the perfect fourths are perfect squares, so the intersection of A and C is completed included in A. this is:
A ∩ C = C or A ∩ C = 1, 16, 81
On the other hand, the perfect cubes are:
1^3 = 1
2^3 = 8
3^3 = 27
4^3 = 81
B = {1, 8, 27, 81}
That means that the numbers 1 and 81 belong to the three sets, A, B, and C.
In the drawing you must place the number 16 inside the region that represents the intersection of A and C only, and the numbers 1 and 81 inside the intersection of the three sets A, B and C.
The balloon has a volume
dependent on its radius
:

Differentiating with respect to time
gives

If the volume is increasing at a rate of 10 cubic m/s, then at the moment the radius is 3 m, it is increasing at a rate of

The surface area of the balloon is

and differentiating gives

so that at the moment the radius is 3 m, its area is increasing at a rate of

It is given that there are 41 males and 48 females in the small school.
So, the number of ways a male student can be chosen from 41 males is 
Likewise, the number of ways a female student can be chosen from 48 females is
.
Thus, the total number of ways in which 2-person combinations are possible to represent the student body at the PTSAC meetings will be given by:

Answer:
-15 is colder than the others
Step-by-step explanation:
It is colder because it is in the negatives but it also has a higher absolute value