1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
densk [106]
3 years ago
9

A1 = 5 and d = 5 find the 25th term

Mathematics
1 answer:
boyakko [2]3 years ago
8 0
An = a + (n - 1)d
A25 = -1 + (24)-10
A25 = -1 -240
A25 = -241
You might be interested in
A-b
Lynna [10]

Answer:

\boxed{\sf d. \ \frac{a}{b}  =  \frac{10}{7}}

Step-by-step explanation:

\sf \implies \dfrac{a - b}{b}  =  \dfrac{3}{7}  \\  \\  \sf \implies  \frac{a}{b}  -  \frac{b}{b}  =  \frac{3}{7}  \\  \\  \sf \implies  \frac{a}{b}  - 1 =  \frac{3}{7}  \\  \\  \sf \implies  \frac{a}{b}  - 1 + 1 =  \frac{3}{7}  + 1 \\  \\  \sf \implies  \frac{a}{b}  =  \frac{3}{7}  + 1 \\  \\  \sf \implies  \frac{a}{b}  =  \frac{3}{7}  +  \frac{7}{7}  \\  \\  \sf \implies  \frac{a}{b}  =  \frac{3 + 7}{7}  \\  \\  \sf \implies  \frac{a}{b}  =  \frac{10}{7}

6 0
3 years ago
Read 2 more answers
A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and
mr Goodwill [35]

Answer:

Bias for the estimator = -0.56

Mean Square Error for the estimator = 6.6311

Step-by-step explanation:

Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.

To find - Determine the bias and the mean squared error for this estimator of the mean.

Proof -

Let us denote

X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)

Now,

An estimate of mean, μ is suggested as

\mu = \frac{3X_{1} + 4X_{2}  }{8}

Now

Bias for the estimator = E(μ bar) - μ

                                    = E( \frac{3X_{1} + 4X_{2}  }{8}) - 4.5

                                    = \frac{3E(X_{1}) + 4E(X_{2})}{8} - 4.5

                                    = \frac{3(4.5) + 4(4.5)}{8} - 4.5

                                    = \frac{13.5 + 18}{8} - 4.5

                                    = \frac{31.5}{8} - 4.5

                                    = 3.9375 - 4.5

                                    = - 0.5625 ≈ -0.56

∴ we get

Bias for the estimator = -0.56

Now,

Mean Square Error for the estimator = E[(μ bar - μ)²]

                                                             = Var(μ bar) + [Bias(μ bar, μ)]²

                                                             = Var( \frac{3X_{1} + 4X_{2}  }{8}) + 0.3136

                                                             = \frac{1}{64} Var( {3X_{1} + 4X_{2}  }) + 0.3136

                                                             = \frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})]  }) + 0.3136

                                                             = \frac{1}{64} [{3(57.76) + 4(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [7(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [404.32]  } + 0.3136

                                                             = 6.3175 + 0.3136

                                                              = 6.6311

∴ we get

Mean Square Error for the estimator = 6.6311

6 0
3 years ago
A quadrilateral has vertices at $(0,1)$, $(3,4)$, $(4,3)$ and $(3,0)$. Its perimeter can be expressed in the form $a\sqrt2+b\sqr
seraphim [82]

Answer:

a + b = 12

Step-by-step explanation:

Given

Quadrilateral;

Vertices of (0,1), (3,4) (4,3) and (3,0)

Perimeter = a\sqrt{2} + b\sqrt{10}

Required

a + b

Let the vertices be represented with A,B,C,D such as

A = (0,1); B = (3,4); C = (4,3) and D = (3,0)

To calculate the actual perimeter, we need to first calculate the distance between the points;

Such that:

AB represents distance between point A and B

BC represents distance between point B and C

CD represents distance between point C and D

DA represents distance between point D and A

Calculating AB

Here, we consider A = (0,1); B = (3,4);

Distance is calculated as;

Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

(x_1,y_1) = A(0,1)

(x_2,y_2) = B(3,4)

Substitute these values in the formula above

Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

AB = \sqrt{(0 - 3)^2 + (1 - 4)^2}

AB = \sqrt{( - 3)^2 + (-3)^2}

AB = \sqrt{9+ 9}

AB = \sqrt{18}

AB = \sqrt{9*2}

AB = \sqrt{9}*\sqrt{2}

AB = 3\sqrt{2}

Calculating BC

Here, we consider B = (3,4); C = (4,3)

Here,

(x_1,y_1) = B (3,4)

(x_2,y_2) = C(4,3)

Substitute these values in the formula above

Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

BC = \sqrt{(3 - 4)^2 + (4 - 3)^2}

BC = \sqrt{(-1)^2 + (1)^2}

BC = \sqrt{1 + 1}

BC = \sqrt{2}

Calculating CD

Here, we consider C = (4,3); D = (3,0)

Here,

(x_1,y_1) = C(4,3)

(x_2,y_2) = D (3,0)

Substitute these values in the formula above

Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

CD = \sqrt{(4 - 3)^2 + (3 - 0)^2}

CD = \sqrt{(1)^2 + (3)^2}

CD = \sqrt{1 + 9}

CD = \sqrt{10}

Lastly;

Calculating DA

Here, we consider C = (4,3); D = (3,0)

Here,

(x_1,y_1) = D (3,0)

(x_2,y_2) = A (0,1)

Substitute these values in the formula above

Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

DA = \sqrt{(3 - 0)^2 + (0 - 1)^2}

DA = \sqrt{(3)^2 + (- 1)^2}

DA = \sqrt{9 +  1}

DA = \sqrt{10}

The addition of the values of distances AB, BC, CD and DA gives the perimeter of the quadrilateral

Perimeter = 3\sqrt{2} + \sqrt{2} + \sqrt{10} + \sqrt{10}

Perimeter = 4\sqrt{2} + 2\sqrt{10}

Recall that

Perimeter = a\sqrt{2} + b\sqrt{10}

This implies that

a\sqrt{2} + b\sqrt{10} = 4\sqrt{2} + 2\sqrt{10}

By comparison

a\sqrt{2} = 4\sqrt{2}

Divide both sides by \sqrt{2}

a = 4

By comparison

b\sqrt{10} = 2\sqrt{10}

Divide both sides by \sqrt{10}

b = 2

Hence,

a + b = 2 + 10

a + b = 12

3 0
3 years ago
Leila is buying a dinosaur model. The price of the model is xxx dollars, and she also has to pay a 7\%7%7, percent tax.
svlad2 [7]

Answer:

Leila is buying a dinosaur model. The price of the model is xxx dollars, and she also has to pay a 7\%7%7, percent tax.

Which of the following expressions could represent how much Leila pays in total for the model?

Step-by-step explanation:

The original price of the dinosaur model is "x" dollars

On top of that, the sales tax is 7% of the original price

Hence,

The total price would be the original amount PLUS the taxed amount

Original Amount = x

Taxed Amount = 7% of x

That is, 7% in decimal multiplied with "x".

7/100 = 0.07

0.07 * x = 0.07x

Total amount = x + 0.07x = 1.07x

The expression for total amount is 1.07x

0 0
3 years ago
Read 2 more answers
When rewriting y = 2x + 1 in function notation, what do you replace with f(x)?
zmey [24]
You replace the y with f(x)
So it becomes f(x)=2x+1
6 0
3 years ago
Read 2 more answers
Other questions:
  • A bowl contains 11 white stones and 3 black stones. One stone is chosen and not replaced, then another stone is chosen. What is
    12·2 answers
  • Round to the nearest hundredth?(geometry?)
    14·1 answer
  • How do you show something declines by a percent%
    10·1 answer
  • What are two numbers that round to 15.5
    14·2 answers
  • Multiply. (−17)⋅(−6) −102 −23 23 102
    12·1 answer
  • Please help need it for a grade
    11·2 answers
  • What is the least common multiple of 25, 10 and 30?
    13·2 answers
  • Please help asap!! :)
    14·1 answer
  • Please help meeeeeee​
    13·1 answer
  • The ratio of flour to sugar in a recipe is 3 cups to 2 cups. If this amount makes 3 dozen
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!