Answer:
0.0918
Step-by-step explanation:
We know that the average amount of money spent on entertainment is normally distributed with mean=μ=95.25 and standard deviation=σ=27.32.
The mean and standard deviation of average spending of sample size 25 are
μxbar=μ=95.25
σxbar=σ/√n=27.32/√25=27.32/5=5.464.
So, the average spending of a sample of 25 randomly-selected professors is normally distributed with mean=μ=95.25 and standard deviation=σ=27.32.
The z-score associated with average spending $102.5
Z=[Xbar-μxbar]/σxbar
Z=[102.5-95.25]/5.464
Z=7.25/5.464
Z=1.3269=1.33
We have to find P(Xbar>102.5).
P(Xbar>102.5)=P(Z>1.33)
P(Xbar>102.5)=P(0<Z<∞)-P(0<Z<1.33)
P(Xbar>102.5)=0.5-0.4082
P(Xbar>102.5)=0.0918.
Thus, the probability that the average spending of a sample of 25 randomly-selected professors will exceed $102.5 is 0.0918.
What expression ? There isn’t one
$4.25 + $1.50 = $5.75= 2 miles
10 x $1.50 = $15.00=10 miles
10 + 2 = 12 miles
$5.75 + $15.00 = $20.75
Answer: V≈2613.81 and
SA= 1055.5751316062 feet2
Step-by-step explanation:
For surface area just sum it down to 1055.57 feet2