Suppose the dimensions of the rectangle is x by y and let the side enclosed by a house be one of the sides measuring x, then the sides that is to be enclosed are two sides measuring y and one side measuring x.
Thus, the length of fencing needed is given by
P = x + 2y
The area of the rectangle is given by xy,
i.e.

Substituting for y into the equation for the length of fencing needed, we have

For the amount of fencing to be minimum, then

Now, recall that

Thus, the length of fencing needed is given by
P = x + 2y = 24 + 2(12) = 24 + 24 = 48.
Therefore, 48 feets of fencing is needed to enclose the garden.
Solve for X on both equations
2x - 2 < -12
Add two on both sides
2x < -10
Divide by two on both sides
2 < -5
2x + 3 > 7
Subtract three on both sides
2x > 4
Divide by two on both sides
x > 2
A. x < -5 or x > 2
Answer:
<u>2/5 < 5/8 < 6/7 < 1 </u>
<u>OR</u>
<u>1 > 6/7 > 5/8 > 2/5</u>
Step-by-step explanation:
It is required to compare Two-fifths, Six-sevenths, Five-eighths, and 1
Two-fifths = 2/5
Six-sevenths = 6/7
Five-eighths = 5/8
So, the given numbers are: 2/5, 6/7, 5/8, and 1
We need to make the numbers in order from the least to the greatest or from the greatest to the least
The easy method is convert the rational numbers to decimal numbers
So,
2/5 = 0.4
6/7 ≈ 0.857
5/8 = 0.625
1 = 1
So, the numbers form the least to the greatest are:
0.4 , 0.625 , 0.857 , 1
So,
2/5 , 5/8 , 6/7 , 1
The inequality correctly compares the numbers are:
<u>2/5 < 5/8 < 6/7 < 1</u>
Or can be written from the greatest to the least as:
<u>1 > 6/7 > 5/8 > 2/5 </u>
112.5 I believe is the right answer
Answer:
3601
-589
———-
To
359(11)
-589
———-
3012
Step-by-step explanation: