Answer: Step-by-step explanation:
y = -7x + 8
X y
-4 36
-2 22
0 8
2 -6
4 -20
Answer: (e-5)^2
Step-by-step explanation:
The box method is a good way to solve this, but for a quick explanation, start by finding a single value that when added gets -10 and when multiplied gets +25. We can find that this term is -5. We the can situate -5 into (e-5)^2 equation, where if you FOIL, you will be back at the unfactored equation. Hope this helps
The correct answer should be E, The sum of a number and three subtracted from seventy-six.
“A number” represented by x, is added to 3, and is therefore labeled a sum.
(x+3)
This sum is then subtracted from 76.
76-(x+3)
9514 1404 393
Answer:
split the number into equal pieces
Step-by-step explanation:
Assuming "splitting any number" means identifying parts that have the number as their sum, the maximum product of the parts will be found where the parts all have equal values.
We have to assume that the number being split is positive and all of the parts are positive.
<h3>2 parts</h3>
If we divide number n into parts x and (n -x), their product is the quadratic function x(n -x). The graph of this function opens downward and has zeros at x=0 and x=n. The vertex (maximum product) is halfway between the zeros, at x = (0 + n)/2 = n/2.
<h3>3 parts</h3>
Similarly, we can look at how to divide a (positive) number into 3 parts that have the largest product. Let's assume that one part is x. Then the other two parts will have a maximum product when they are equal. Their values will be (n-x)/2, and their product will be ((n -x)/2)^2. Then the product of the three numbers is ...
p = x(x^2 -2nx +n^2)/4 = (x^3 -2nx^2 +xn^2)/4
This will be maximized where its derivative is zero:
p' = (1/4)(3x^2 -4nx +n^2) = 0
(3x -n)(x -n) = 0 . . . . . . . . . . . . . factor
x = n/3 or n
We know that x=n will give a minimum product (0), so the maximum product is obtained when x = n/3.
<h3>more parts</h3>
A similar development can prove by induction that the parts must all be equal.
5) The relation between intensity and current appears linear for intensity of 300 or more (current = intensity/10). For intensity of 150, current is less than that linear relation would predict. This seems to support the notion that current will go to zero for zero intensity. Current might even be negative for zero intensity since the line through the points (300, 30) and (150, 10) will have a negative intercept (-10) when current is zero.
Usually, we expect no output from a power-translating device when there is no input, so we expect current = 0 when intensity = 0.
6) We have no reason to believe the linear relation will not continue to hold for values of intensity near those already shown. We expect the current to be 100 for in intensity of 1000.
8) Apparently, times were only measured for 1, 3, 6, 8, and 12 laps. The author of the graph did not want to extrapolate beyond the data collected--a reasonable choice.