Answer:
a) Therefore, the minimum value of the function f is -1/2.
Therefore, the maximum value of the function f is 1/2.
b)Therefore, the minimum value of the function f is 1.
Therefore, the maximum value of the function f is 16.
Step-by-step explanation:
We find the maximum and minimum values attained by the function f along the path c(t). From exercise we have:
a)
Therefore, we get:
![f(x,y)=xy\\\\f(x,y)=\cos t \cdot \sin t\\\\f(x,y)=\frac{1}{2} \sin 2t](https://tex.z-dn.net/?f=f%28x%2Cy%29%3Dxy%5C%5C%5C%5Cf%28x%2Cy%29%3D%5Ccos%20t%20%5Ccdot%20%5Csin%20t%5C%5C%5C%5Cf%28x%2Cy%29%3D%5Cfrac%7B1%7D%7B2%7D%20%5Csin%202t)
We know that:
![-1\leq \sin 2t\leq 1\\\\\implies -\frac{1}{2} \leq \frac{1}{2}\sin 2t\leq \frac{1}{2}\\\\\implies -\frac{1}{2}\leq f(x, y)\leq \frac{1}{2}](https://tex.z-dn.net/?f=-1%5Cleq%20%5Csin%202t%5Cleq%201%5C%5C%5C%5C%5Cimplies%20-%5Cfrac%7B1%7D%7B2%7D%20%5Cleq%20%5Cfrac%7B1%7D%7B2%7D%5Csin%202t%5Cleq%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%5Cimplies%20-%5Cfrac%7B1%7D%7B2%7D%5Cleq%20f%28x%2C%20y%29%5Cleq%20%5Cfrac%7B1%7D%7B2%7D)
Therefore, the minimum value of the function f is -1/2.
Therefore, the maximum value of the function f is 1/2.
We use software to drawn a graph.
b)
![f(x,y)=x^2+y^2\\\\c(t)=(\cos t, 4\sin t)\\\\0\leq t\leq 2\pi\\](https://tex.z-dn.net/?f=f%28x%2Cy%29%3Dx%5E2%2By%5E2%5C%5C%5C%5Cc%28t%29%3D%28%5Ccos%20t%2C%204%5Csin%20t%29%5C%5C%5C%5C0%5Cleq%20t%5Cleq%202%5Cpi%5C%5C)
Therefore, we get:
![f(x,y)=x^2+y^2\\\\f(x,y)=(\cos t)^2 \cdot (4\sin t)^2\\\\f(x,y)=\cos^2t+16\sin^2t\\\\f(x,y)=\cos^2t+\sin^2t+15\sin^2t\\\\f(x,y)=1+15\sin^2t](https://tex.z-dn.net/?f=f%28x%2Cy%29%3Dx%5E2%2By%5E2%5C%5C%5C%5Cf%28x%2Cy%29%3D%28%5Ccos%20t%29%5E2%20%5Ccdot%20%284%5Csin%20t%29%5E2%5C%5C%5C%5Cf%28x%2Cy%29%3D%5Ccos%5E2t%2B16%5Csin%5E2t%5C%5C%5C%5Cf%28x%2Cy%29%3D%5Ccos%5E2t%2B%5Csin%5E2t%2B15%5Csin%5E2t%5C%5C%5C%5Cf%28x%2Cy%29%3D1%2B15%5Csin%5E2t)
We know that:
![0\leq \sin^2t\leq 1\\\\\implies 0\leq 15\sin^2t\leq 15\\\\1\leq 1+15\sin^2t\leq 16\\\\ \implies 1\leq f(x,y) \leq 16](https://tex.z-dn.net/?f=0%5Cleq%20%5Csin%5E2t%5Cleq%201%5C%5C%5C%5C%5Cimplies%200%5Cleq%2015%5Csin%5E2t%5Cleq%2015%5C%5C%5C%5C1%5Cleq%201%2B15%5Csin%5E2t%5Cleq%2016%5C%5C%5C%5C%20%5Cimplies%201%5Cleq%20f%28x%2Cy%29%20%5Cleq%2016)
Therefore, the minimum value of the function f is 1.
Therefore, the maximum value of the function f is 16.
We use software to drawn a graph.