Hello Friend,here is the solution for your question
<span>so the given function is </span>
y= √(-2cos²x+3cosx-1)
i.e = √[-2(cos²x-3/2+1/2)]
i.e = √[-2(cosx-3/4)²-9/16+1/2]
i.e. = √[-2(cos-3/4)²-1/16]
i.e. = √[1/8-3(cosx=3/4)²]-----------(1)
Now here in this equation is this quantity :-
<span>(cosx=3/4)²----------------(2) is to it's minimum value then the whole equation </span>
<span>i.e. = √[1/8-3(cosx=3/4)²] will be maximum and vice versa </span>
And we know that cosx-3/4 will be minimum if cosx=3/4
<span>therefore put this in (1) we get </span>
(cosx=3/4)²=0 [ cosx=3/4]
<span>hence the minimum value of the quantity (cosx=3/4)² is 0 </span>
<span>put this in equation (1) </span>
we get ,
i.e. = √[1/8-3(cosx=3/4)²]
=√[1/8-3(0)] [ because minimum value of of the quantity (cosx=3/4)² is 0 ]
=√1/8
=1/(2√2)
<span>this is the maximum value now to find the minimum value </span>
<span>since this is function of root so the value of y will always be ≥0 </span>
<span>hence the minimum value of the function y is 0 </span>
<span>Therefore, the range of function </span>y is [0,1/(2√2)]
__Well,I have explained explained each and every step,do tell me if you don't understand any step._
Answer:
the answer is 200
Step-by-step explanation:
Answer:
(b)0.56
(c)0.38
Step-by-step explanation:
(a)
P(Ben Pass) =0.8
Therefore: P(Ben fails)=1-0.8 =0.2
P(Tom Pass) =0.7
Therefore: P(Tom fails)=1-0.7 =0.3
See attached for the completed tree diagram
(b)Probability that both will pass
P(both will pass)=P(Ben pass and Tom pass)
=P(Ben pass) X P(Tom pass)
=0.8 X 0.7
=0.56
(c)The probability that only one of them will pass
Since either Tom or Ben can pass, we have:
P(only one of them will pass)
=P(Ben pass and Tom fails OR Ben Fails and Tom Pass)
=P(Ben pass and Tom fails)+P(Ben Fails and Tom Pass)
=(0.8 X 0.3) + (0.2 X 0.7)
=0.24 + 0.14
=0.38
Answer:
These correspond to two types of cost: fixed cost and variable cost. Fixed cost (FC): the cost of all fixed inputs in a production process. Another way of saying this: production costs that do not change with the quantity of output produced. Variable cost (VC): the cost of all variable inputs in a production process.