1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brrunno [24]
3 years ago
9

If f(x)=5x-2 and g(x)=2x+1, find (f+g)(x) A.7x-3 B.3x-1 C.7x-1 D.4x-3

Mathematics
1 answer:
Gwar [14]3 years ago
6 0

Answer:

(f+g)(x) = 7x -1  (Answer C)

Step-by-step explanation:

Rewrite these two functions, one above the other, for ease in adding:

f(x) = 5x - 2

+g(x) =2x + 1

------------------

(f+g)(x) = 7x -1


You might be interested in
F + 25 = 50<br><br> f = <br><br> please help
Xelga [282]

Answer:

25 because 50 minus 25 is 25

5 0
2 years ago
Read 2 more answers
A firm has a debt to asset ratio of 75%, $264,000 in debt, and net income of $49,280. calculate return on equity
svlad2 [7]
Asset = 264,000 / 0.75 = $352,000
Shareholders equity = $352,000 - $264,000 = 88,000

Return on equity = 49,280 / 88,000 x 100% = 56%
3 0
2 years ago
Solve for me please this is trigonometry
Vladimir79 [104]

Answer:

x= 23.4

Step-by-step explanation:

In a right triangle the tangent of an angle is the ratio of the opposite length over the adjacent*. In formulas, tan 54° = x/17 Solving for x, using a calculator for the tangent, x= 23.4

*I promise I didn't just spellcheck that.

3 0
2 years ago
The volumes of two spheres are 729 in3 and 27 in3.
forsale [732]
I think it is gonna be 2:7
8 0
3 years ago
Suppose there are 4 defective batteries in a drawer with 10 batteries in it. A sample of 3 is taken at random without replacemen
SSSSS [86.1K]

Answer:

a.) 0.5

b.) 0.66

c.) 0.83

Step-by-step explanation:

As given,

Total Number of Batteries in the drawer = 10

Total Number of defective Batteries in the drawer = 4

⇒Total Number of non - defective Batteries in the drawer = 10 - 4 = 6

Now,

As, a sample of 3 is taken at random without replacement.

a.)

Getting exactly one defective battery means -

1 - from defective battery

2 - from non-defective battery

So,

Getting exactly 1 defective battery = ⁴C₁ × ⁶C₂ =  \frac{4!}{1! (4 - 1 )!} × \frac{6!}{2! (6 - 2 )!}

                                                                            = \frac{4!}{(3)!} × \frac{6!}{2! (4)!}

                                                                            = \frac{4.3!}{(3)!} × \frac{6.5.4!}{2! (4)!}

                                                                            = 4 × \frac{6.5}{2.1! }

                                                                            = 4 × 15 = 60

Total Number of possibility = ¹⁰C₃ = \frac{10!}{3! (10-3)!}

                                                        = \frac{10!}{3! (7)!}

                                                        = \frac{10.9.8.7!}{3! (7)!}

                                                        = \frac{10.9.8}{3.2.1!}

                                                        = 120

So, probability = \frac{60}{120} = \frac{1}{2} = 0.5

b.)

at most one defective battery :

⇒either the defective battery is 1 or 0

If the defective battery is 1 , then 2 non defective

Possibility  = ⁴C₁ × ⁶C₂ = 60

If the defective battery is 0 , then 3 non defective

Possibility   = ⁴C₀ × ⁶C₃

                   =  \frac{4!}{0! (4 - 0)!} × \frac{6!}{3! (6 - 3)!}

                   = \frac{4!}{(4)!} × \frac{6!}{3! (3)!}

                   = 1 × \frac{6.5.4.3!}{3.2.1! (3)!}

                   = 1× \frac{6.5.4}{3.2.1! }

                   = 1 × 20 = 20

getting at most 1 defective battery = 60 + 20 = 80

Probability = \frac{80}{120} = \frac{8}{12} = 0.66

c.)

at least one defective battery :

⇒either the defective battery is 1 or 2 or 3

If the defective battery is 1 , then 2 non defective

Possibility  = ⁴C₁ × ⁶C₂ = 60

If the defective battery is 2 , then 1 non defective

Possibility   = ⁴C₂ × ⁶C₁

                   =  \frac{4!}{2! (4 - 2)!} × \frac{6!}{1! (6 - 1)!}

                   = \frac{4!}{2! (2)!} × \frac{6!}{1! (5)!}

                   = \frac{4.3.2!}{2! (2)!} × \frac{6.5!}{1! (5)!}

                   = \frac{4.3}{2.1!} × \frac{6}{1}

                   = 6 × 6 = 36

If the defective battery is 3 , then 0 non defective

Possibility   = ⁴C₃ × ⁶C₀

                   =  \frac{4!}{3! (4 - 3)!} × \frac{6!}{0! (6 - 0)!}

                   = \frac{4!}{3! (1)!} × \frac{6!}{(6)!}

                   = \frac{4.3!}{3!} × 1

                   = 4×1 = 4

getting at most 1 defective battery = 60 + 36 + 4 = 100

Probability = \frac{100}{120} = \frac{10}{12} = 0.83

3 0
2 years ago
Other questions:
  • A metal strip is being installed around a workbench that is 8 feet long and 3 feet wide. If the stripping costs $6 per foot, fin
    14·1 answer
  • Please help me understand this problem! I don’t understand the methods to understand how to solve it
    5·1 answer
  • A square is defined to be a quadrilateral with four congruent sides and four right
    10·1 answer
  • Martha rolls a 6 sided number cube two times.
    12·1 answer
  • Please help me quickly
    14·1 answer
  • Helppp i need answer now will give points
    5·1 answer
  • What is the value of a in the division of <br>x3+5x2+6x+1 ÷ x-a​
    7·1 answer
  • Solve for X. 3/4x+7/8=4 1/4 Enter your answer as a mixed number in simplest form in the box.
    15·1 answer
  • (05.06 MC)
    9·1 answer
  • Tina baked a batch of 40 cupcakes. daisy baked 4/5 as many cupcakes as tina. miko baked 1/2 as many cupcakes as daisy. how many
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!