A mechanical wave moves through all matter
Q9. R₁ only.
Since the upper branch is cut at x, the circuit in this branch is not closed. No current will flow through this branch. In this case, the circuit becomes a series circuit and current only flows through R₁.
Q10. 3 pathways.
3 different resistors are connected in parallel, which means there will be three branches of parallel circuit, each with one resistor. Current can flow through 3 different branches, until the parallel circuits combine together again.
Answer:

Explanation:
Total =40 miles.
y miles at x miles/hr.
40- y miles at 1.25 x miles/hr.\
We know that
Distance = time x velocity
For y miles
Lets time taken to cover y miles is t
y = x t
t=y/x -----------1
For 40- y
Lets time taken to cover 40- y is t'
40- y = 1.25 x t'
t'=(40-y)/1.25x -----------2
By adding both equation
t+t'=y/x + (40-y)/1.25x
t+t'=(32+0.2y)/x
Now lets time T taken by Marla if she will travel at x miles per hr for entire trip.
40 = x T
T=40/x
So

To find numerical value of above expression we have to know the value of y.
Answer:
S=48.29 m
Explanation:
Given that the height of the hill h = 2.9 m
Coefficient of kinetic friction between his sled and the snow μ = 0.08
Let u be the speed of the skier at the bottom of the hill.
By applying conservation of energy at the top and bottom of the inclined plane we get.
Potential Energy=kinetic Energy
mgh = (1/2) mu²
u² = 2gh
u²=2(9.81)(2.9)
=56.89
u=7.54 m/s
a = - f / m
a = - μ*m*g / m
a = - μg
From equation of motion
v²- u² = 2 -μ g S
v=0 m/s
-(7.54)²=-2(0.06)(9.81)S
S=48.29 m
Answer:
8.362m/s
Explanation:
Given data
Mass m1= 7.77kg
Velocity v1= 7.77m/s
Mass m2= 8.88kg
Velocity v2= 8.88m/s
Apply the law of conservation of momentum for inelastic collision we have
m1v1+m2v2= (m+m2)V
7.77*7.77+ 8.88*8.88= (7.77+8.88)V
60.3729+78.8544= 16.65V
139.2273= 16.65V
Divide both sides by 16.65
V= 139.2273/16.65
V= 8.362m/s
Hence the final velocity is 8.362m/s