A. You would start off by a rectangle in the middle, then you would place to squares on the bottom and top if the rectangle. After you've done that, you place two rectangles (Same size as the original) on both sides of the original rectangle. Finally you add a rectangle (Same size) to either ends of the secondary rectangles. It should look like this.
B. You would start off with a rectangle in the middle, then you would add 2 equilateral triangles to the top and bottom of the rectangle. After that, you Simply put 2 rectangles (Same size as the original) on both sides of the rectangle. It should look something like this.
C. To make a pyramid, it's actually quite simple. You would start off with a square in the middle, and then place equilateral triangles on ALL sides of the square. It should look something like this.
I hope this helped ^^
So, the definite integral 
Given that
We find

<h3>Definite integrals </h3>
Definite integrals are integral values that are obtained by integrating a function between two values.
So, 
So, ![\int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6\int\limits^1_0 {x^{2} } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%284%20-%206x%5E%7B2%7D%20%29%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B4%7D%20%5C%2C%20dx%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%204%5B1%20-%200%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%5B1%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx)
Since
,
Substituting this into the equation the equation, we have

So, 
Learn more about definite integrals here:
brainly.com/question/17074932
The coin wouldn't be fair, because it landed on heads 72/100 times. If the coin was fair, the results should be equivalent to 1/2.
Answer:
The variance for the number of tasters is 4.2
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they are tasters, or they are not. The probability of a person being a taster is independent of any other person. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
The variance of the binomial distribution is:

It is known that 70% of the American people are "tasters" with the rest are "non-tasters". Suppose a genetics class of size 20
This means that 
So

The variance for the number of tasters is 4.2
21n+14 you have to find the value of n