Answer:
Cos θ = √7/3
Step-by-step explanation:
From the question given above, the following data were obtained:
Sine θ = √2 / 3
Cos θ =?
Recall
Sine θ = Opposite / Hypothenus
Sine θ = √2 / 3
Thus,
Opposite = √2
Hypothenus = 3
Next, we shall determine the Adjacent. This can be obtained as follow:
Opposite = √2
Hypothenus = 3
Adjacent =?
Hypo² = Adj² + Opp²
3² = Adj² + (√2)²
9 = Adj² + 2
Collect like terms
9 – 2 = Adj²
7 = Adj²
Take the square root of both side
Adjacent = √7
Finally, we shall determine the value Cos θ. This can be obtained as follow:
Adjacent = √7
Hypothenus = 3
Cos θ =?
Cos θ = Adjacent / Hypothenus
Cos θ = √7/3
Answer:
y= 32
Step-by-step explanation:
HOPE THIS HELPS :)
Answer:
d
Step-by-step explanation:
Answer:
3 is the answer because it's value only add by the 3
Answer:
x = 28 cm
Step-by-step explanation:
Given:
Area of link shaded regions = 84 cm²
Required:
The value of x (diameter of the semicircle/length of the rectangle)
Solution:
Diameter of the semicircle = 2r = x
Length of rectangle (L) = 2r = x
Radius of semicircle (r) = ½x
Width of rectangle (W) = radius of semicircle = ½x
Use 3.14 as π
Area of the link shaded regions = area of rectangle - area of semicircle
Thus:
Area of the link shaded regions = (L*W) - (½*πr²)
Plug in the values
84 = (x*½x) - (½*3.14*(½x)²)
84 = x²/2 - (1.57*x²/4)
84 = x²(½ - 1.57/4)
84 = x²(0.5 - 0.3925)
84 = x²(0.1075)
Divide both sides by 0.1075
84/0.1075 = x²
781.4 = x²
√781.4 = x
27.9535329 = x
x = 28 cm