Sister chromatids have different alleles although carry same genes on same loci. So if it doesn't happen so, like if there are same alleles on sister chromatids then there is a problem in its formation. i.e., male and female alleles haven't contributed equally ( may be an error during their segregation process ). And obviously it doesn't happen in a real cell so we must understand this point. Because normally whenever it happens there's one half from the male and one half from the female. (i.e. maternal and paternal alleles contribute equally).
I hope you get the answer!!!
Phenotypically and genotypically there are only two different ratios. If you think of a Punett square...
<span>You could say that a pea plant with the trait for the dominant color green (G) could also carry the recessive trait for yellow (g). So let's say you mate a dominant green, (Gg) with another dominant green, (Gg). You would get 1 (GG), 2 (Gg) and 2 (gg). </span>
<span>Phenotypically (as in physical traitwise), the ratio is 3:1 because you have 3 green colored peas and one yellow. </span>
<span>Genotypically (as in traitwise), the ratio is 1:2:1, because you have 1 (GG), 2 (Gg) and 1 (gg). </span>
<span>So although it's random, for any specific trait there are only 4 different outcomes.</span>
Answer:
Mitochondria
Explanation:
Mitochondria are tiny organelles inside cells that are involved in releasing energy from food. This process is known as cellular respiration. It is for this reason that mitochondria are often referred to as the powerhouses of the cell