Answer: the coefficient of volume expansion of glass = 0.86/(1000 * 52) = 0.00001654 per degree.
Explanation:
Original volume of mercury = 1000 cm3.
The final volume of mercury considering its volume expansion quotient = 1000 + 1000*(1.8*10^-4 *52) = 1000 + 9.36 = 1009.36 cm^3
Considering the glass as a non expanding substance, the complete excess volume of 9.36 cm3 of mercury should have overflown the container, but due to the expansion of glass, the capacity of mercury containment increases and so a lesser amount of mercury flows out.
The amount of mercury that actually flowed out = 8.50 cm3.
So, the expansion of the glass container = 9.36-8.50 = 0.86 cm3.
Using the formula for coefficient of expansion,
coefficient of volume expansion of glass = 0.86/(1000 * 52) = 0.00001654 per degree.
Adding and subtracting with scientific notation may require more care, because the rule for adding and subtracting exponential expressions is that the expressions must havelike terms<span>. Remember that to be </span>like terms<span>, two expressions must have exactly the same base numbers to exactly the same powers. Thinking about decimal arithmetic, the requirement that we have the same powers makes sense, because that guarantees that all of the place values are lined up properly.</span>
Answer:
<h2>6426000 mg</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
mass = Density × volume
From the question
63 mL = 63 cm³
We have
mass = 102 × 63 = 6426
But 1 g = 1000 mg
6426 g = 6426000 mg
We have the final answer as
<h3>6,426,000 mg</h3>
Hope this helps you
<span>The correct answer is the first option. Electron is not found in the nucleus of an atom. The sub-atomic particles of an atom are the
proton, electron and the neutron. An electron has a charge of -1 and a
smaller mass than a proton. Proton has the same mass with the neutron. The
ratio between the mass of a proton and an electron is about 2000. An electron
has an equal value but negative charge with the proton.</span>
Answer:
ability to rust
Explanation:
i'm like 90% sure thats correct