The radius of the circle tangent to sides AC and BC and to the circumcircle of triangle ABC.
r= 24.
<h3>What is the radius of the circle tangent to sides AC and BC and to the circumcircle of triangle ABC.?</h3>
Generally, the equation for side lengths AB is mathematically given as
Triangle ABC has side lengths
Where
- AB = 65,
- BC = 33,
- AC = 56.
Hence
r √ 2 · (89 √ 2/2 − r √ 2) = r(89 − 2r),
r = 89 − 65
r= 24.
In conclusion, The radius of the circle tangent to sides AC and BC and to the circumcircle of triangle ABC.
r= 24.
Read more about radius
brainly.com/question/13449316
#SPJ4
Using the z-distribution, as we have a proportion, the 95% confidence interval is (0.2316, 0.3112).
<h3>What is a confidence interval of proportions?</h3>
A confidence interval of proportions is given by:

In which:
is the sample proportion.
In this problem, we have a 95% confidence level, hence
, z is the value of Z that has a p-value of
, so the critical value is z = 1.96.
We also consider that 130 out of the 479 season ticket holders spent $1000 or more at the previous two home football games, hence:

Hence the bounds of the interval are found as follows:


The 95% confidence interval is (0.2316, 0.3112).
More can be learned about the z-distribution at brainly.com/question/25890103
Answer:
13 3/4
Step-by-step explanation:
2 3/4 is 11/4 when converted into an improper fraction.
5 is 5/1 when converted into a fraction.
11*5 is 55 (numerators)
4*1 is 4 (denominators)
55/4 is 13 with 3/4 remaining
13 3/4
Angelica is 23
Steps
Use the equation x=2j-5
Plug in jahiems age (14) for j and solve for c
Vertex = (1,4)
Axis of symmetry is x = 1, (1,0) or just 1
<span />