When it comes to population evolution and genetics, we cannot fail to cite the Hardy-Weinberg principle which emphasizes that if evolutionary factors such as natural selection, mutation, migration and genetic oscillation do not act on a particular population, the frequencies genotypic proportions will remain constant.
The five requirements for a population to be in Hardy-Weinberg equilibrium are:
- Large-scale breeding population: For a population to be in Hardy-Weinberg equilibrium, it is important that this population is large, as small populations favor genetic drift (unanticipated fluctuations in allele frequencies from one generation to another).
- Random mating: In order for the Hardy-Weinberg equilibrium to occur, it is necessary that the mating occur at random, with no preference for certain groups within the population. In this case, we say that the population is in panmixia, that is, they all mate at random.
- No mutations: Mutations alter the total alleles present in a population (gene pool). Therefore, in a Hardy-Weinberg equilibrium population, no mutations should occur.
- No gene flow: When there is gene flow due to migration or immigration of individuals, some genes may be included or excluded from the population. Thus, in an equilibrium situation, no gene flow occurs.
- Lack of natural selection: For a population to be in Hardy-Weinberg equilibrium, natural selection must not be acting on it. If natural selection acts, some genotypes will be selected, modifying the allelic frequencies of the population.
La respuesta es la interfase
Answer:
I would write "terrestrial/lives on land during all life stages" between the frog and pigeon branches.
Explanation:
Jaw evolution has started with fish, so i'd place that before the perch, evolution of four limbs is next and I would plate it between the perch and the frog. Evolution of an egg has ensured that organisms remain terrestrial during all stages of life and don't need to rely on water to lay their eggs. So I would place that between the frog and the pigeon. True mammary glands and true hair, as we know it formed on mammals so i'd place that between the pigeon and the rats (although synapsids evolved similar structures long before birds even existed). And lastly, I would place "walking on two legs" between rats and human branches. Because our ancestors evolved bipedalism relatively late.
The answer should be proteins. Because the protein is consists of different kinds of amino acids(usually 20 in total). And our cell can not produce essential amino acids itself.