Just go through it phrase by phrase by phrase - one step at a time.
2*( )
2*(x - 7)
Answer:
11 3/13% per annum
Step-by-step explanation:
to find rate= 100×simple interest ÷ (principal ×time)
simple interest=total amount - principal
=1,500,000-1,300,000
=200,000
=200,000 ×100÷ 1,300,000×4
=3 11/13% per annum
Answer:
the bicycle will travel 277.5 feet or 3,330.1 inches.
Step-by-step explanation:
the circumference(distance around a tire) is calculated by multiplying a circles diameter by pi. the diameter is twice the length of the radius.
so if you multiply 13 1/4 by 2 you get 26 1.5 if you multiply that by pi than you get the circumference. then multiply this by 40 to get the inches traveled and divide that by 12 to get the number of feet traveled.
Answer:

Step-by-step explanation:
We must remember that in order to get one even number we need to multiply one even number times one odd number or two even numbers. So, the first term tells the probability of having an even number from A and an even number from B, the next would be even from A and odd from B and the last one tells the likelihood of having odd from A and even from B
Answer:
City @ 2017 = 8,920,800
Suburbs @ 2017 = 1, 897, 200
Step-by-step explanation:
Solution:
- Let p_c be the population in the city ( in a given year ) and p_s is the population in the suburbs ( in a given year ) . The first sentence tell us that populations p_c' and p_s' for next year would be:
0.94*p_c + 0.04*p_s = p_c'
0.06*p_c + 0.96*p_s = p_s'
- Assuming 6% moved while remaining 94% remained settled at the time of migrations.
- The matrix representation is as follows:
- In the sequence for where x_k denotes population of kth year and x_k+1 denotes population of x_k+1 year. We have:
![\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_k = x_k_+_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_k%20%3D%20x_k_%2B_1)
- Let x_o be the populations defined given as 10,000,000 and 800,000 respectively for city and suburbs. We will have a population x_1 as a vector for year 2016 as follows:
![\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_o = x_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_o%20%3D%20x_1)
- To get the population in year 2017 we will multiply the migration matrix to the population vector x_1 in 2016 to obtain x_2.
![x_2 = \left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right]\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_o](https://tex.z-dn.net/?f=x_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_o)
- Where,
![x_o = \left[\begin{array}{c}10,000,000\\800,000\end{array}\right]](https://tex.z-dn.net/?f=x_o%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%2C000%2C000%5C%5C800%2C000%5Cend%7Barray%7D%5Cright%5D)
- The population in 2017 x_2 would be:
![x_2 = \left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right]\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] \left[\begin{array}{c}10,000,000\\800,000\end{array}\right] \\\\\\x_2 = \left[\begin{array}{c}8,920,800\\1,879,200\end{array}\right]](https://tex.z-dn.net/?f=x_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%2C000%2C000%5C%5C800%2C000%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cx_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%2C920%2C800%5C%5C1%2C879%2C200%5Cend%7Barray%7D%5Cright%5D)