Answer:
P(A∣D) = 0.667
Step-by-step explanation:
We are given;
P(A) = 3P(B)
P(D|A) = 0.03
P(D|B) = 0.045
Now, we want to find P(A∣D) which is the posterior probability that a computer comes from factory A when given that it is defective.
Using Bayes' Rule and Law of Total Probability, we will get;
P(A∣D) = [P(A) * P(D|A)]/[(P(A) * P(D|A)) + (P(B) * P(D|B))]
Plugging in the relevant values, we have;
P(A∣D) = [3P(B) * 0.03]/[(3P(B) * 0.03) + (P(B) * 0.045)]
P(A∣D) = [P(B)/P(B)] [0.09]/[0.09 + 0.045]
P(B) will cancel out to give;
P(A∣D) = 0.09/0.135
P(A∣D) = 0.667
Answer:
1.5
Step-by-step explanation:
Assuming that you mean that Simon is scaling Logan's build, the scale factor is 1.5.
To find this, you divide Simon's fort height by Logans.
7.5/5 = 1.5.
Answer:
x=-3
Step-by-step explanation:
F(x) just means X.
0=x+3
0-3=x+3-3
-3=x
Answer:
It should be 9 m :)
Step-by-step explanation:
Answer:
f(x) = 2(x -3)² +5 or f(x) = 2x² -12x +23
Step-by-step explanation:
The equation of a quadratic is easily written in vertex form when the coordinates of the vertex are given. Here, the point one horizontal unit from the vertex is 2 vertical units higher, indicating the vertical scale factor is +2.
__
<h3>vertex form</h3>
The vertex form equation for a parabola is ...
f(x) = a(x -h)² +k . . . . . . vertex (h, k); vertical scale factor 'a'
<h3>equation</h3>
For vertex (h, k) = (3, 5) and vertical scale factor a=2, the vertex form equation of the parabola is ...
f(x) = 2(x -3)² +5 . . . . . vertex form equation
Expanded to standard form, this is ...
f(x) = 2(x² -6x +9) +5
f(x) = 2x² -12x +23 . . . . . standard form equation