A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.
Answer:
Approximately 11.5 units.
Step-by-step explanation:
We need to find the side opposite to ∠W. We are given the two angles ∠W and ∠X. We are also given that Side X is equal to 7. Therefore, we can use the Law of Sines.
Now, like last time, use the Law of Sines:

We can ignore the first term. Plug in 144 for ∠W, 21 for ∠X, and 7 for <em>x</em>.

Cross multiply:

The answer should be 11 since adding all the x’s up before 13 equals 11
Answer:
864.36 boxes
Step-by-step explanation:
In the question above, we are given the following values,
Confidence interval 95%
Since we know the confidence interval, we can find the score.
Z score = 1.96
σ , Standards deviation = 15mm
Margin of error = 1 mm
The formula to use to solve the above question is given as:
No of boxes =[ (z score × standard deviation)/ margin of error]²
No of boxes = [(1.96 × 15)/1]²
= 864.36 boxes
Based on the options above, we can round it up to 97 boxes.