Answer:
(a) g = 8.82158145
.
(b) 7699.990192m/s.
(c)5484.3301s = 1.5234 hours.(extremely fast).
Explanation:
(a) Strength of gravitational field 'g' by definition is
, here G is Gravitational Constant, and r is distance from center of earth, all the values will remain same except r which will be radius of earth + altitude at which ISS is in orbit.
r = 6721,000 meters, putting this value in above equation gives g = 8.82158145
.
(b) We have to essentially calculate centripetal acceleration that equals new 'g'.
here g is known, r is known and v is unknown.
plugging in r and g in above and solving for unknown gives V = 7699.990192m/s.
(c) S = vT, here T is time period or time required to complete one full revolution.
S = earth's circumfrence , V is calculated in (B) T is unknown.
solving for unknown gives T = 5484.3301s = 1.5234hours.
Well I don't know. Let's actually LOOK at the picture and see if that helps.
A, B, C, and D all have the same TOTAL length, but A has the most waves crammed into that same total length.
By golly, that means the length of <u><em>each</em></u> wave in A must be shorter than each wave in B, C, or D.
The correct choice is <em> A </em>. Looking at the picture did the trick !