The Box's Acceleration : g sin θ
<h3>Further explanation </h3>
Newton's 2nd law explains that the acceleration produced by the resultant force on an object is proportional and in line with the resultant force and inversely proportional to the mass of the object
∑F = m. a
F = force, N
m = mass = kg
a = acceleration due to gravity, m / s²
We plot the forces acting on the block (picture attached) according to the y-axis and the x-axis.
Because the motion of the block is in the same direction as the x-axis, ignoring the friction force with the inclined plane, then
Answer:
by straining that muscle it can slow down the amount of muscle your supposed to get
Explanation:
Answer:
The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Explanation:
Given that,
Mass = 2.15 kg
Distance = 0.0895 m
Amplitude = 0.0235 m
We need to calculate the spring constant
Using newton's second law
Where, f = restoring force
Put the value into the formula
We need to calculate the kinetic energy of the mass
Using formula of kinetic energy
Here,
Here,
Put the value into the formula
Hence, The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Answer: Eclipse
Explanation: A lunar eclipse occurs when the full moon moves through the shadow of the Earth. This can only happen when the Earth is between the Moon and the Sun and all three are lined up in the same plane, called the ecliptic. The ecliptic is the plane of Earth's orbit around the Sun.
Answer:
it's C and D... do you understand?