To answer, evaluate the power of 10 in the given choices. If it is positve, move the decimal n places to the right. If it is negative, move the decimal n corresponding places to the left. From all the choices given, only the choices D, E, and F will give us the correct answer.
The final speed of the nickel at the given quantity of heat is determined as 202.1 m/s.
<h3>Final speed of the nickel</h3>
Apply the principle of conservation of energy.
Q = mcΔθ
Q = (18)(0.444)(66 - 20)
Q = 367.63 J
Q = K.E = ¹/₂mv²
2K.E = mv²
v = √(2K.E/m)
where;
v = √(2 x 367.63)/(0.018))
v = 202.1 m/s
Learn more about speed here: brainly.com/question/4931057
#SPJ1
Answer:
(a) B = 5.6 micro Tesla
Explanation:
Current in the wire, i = 140 A
distance, r = 5 m
The formula for the magnetic field at a distance r due to the current carrying wire


B = 5.6 x 10^-6 Tesla
B = 5.6 micro Tesla
(b) As the magnetic field of earth at this site is 20 micro tesla so the magnetic field due to current carrying wire interfere the magnetic compass.
Answer:
6.5 m/s
Explanation:
We are given that
Distance, s=100 m
Initial speed, u=1.4 m/s
Acceleration, 
We have to find the final velocity at the end of the 100.0 m.
We know that

Using the formula






Hence, her final velocity at the end of the 100.0 m=6.5 m/s
Answer:
a= 92. 13 m/s²
Explanation:
Given that
Amplitude ,A= 0.165 m
The maximum speed ,V(max) = 3.9 m/s
We know that maximum velocity in the SHM given as
V(max) = ω A
ω=Angular speed
A=Amplitude

ω=23.63 rad/s
The maximum acceleration given as
a = ω² A
a= (23.63)² x 0.165 m/s²
a= 92. 13 m/s²
Therefore the maximum magnitude of the acceleration will be 92. 13 m/s².