Answer:
4(p−1)(p−3)
Step-by-step explanation:
Factor 4p2−16p+12
4p2−16p+12
=4(p−1)(p−3)
UY = 25
<em><u>hope </u></em><em><u>this </u></em><em><u>answer </u></em><em><u>helps </u></em><em><u>you </u></em><em><u>dear.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care!</u></em>
<em><u>if </u></em><em><u>u </u></em><em><u>have </u></em><em><u>any </u></em><em><u>doubt </u></em><em><u>so </u></em><em><u>feel </u></em><em><u>free </u></em><em><u>to </u></em><em><u>ask!</u></em>
Opposite number is the same number with the opposite sign:
So the opposite of

is

, since the original number is positive
opposite of

is

, since the original number is negative
We have the following equation:
<span> h(t)=-4.92t^2+17.69t+575
</span> For the domain we have:
<span> </span>We match zero:
-4.92t ^ 2 + 17.69t + 575 = 0
We look for the roots:
t1 = -9.16
t2 = 12.76
We are left with the positive root, so the domain is:
[0, 12.76]
For the range we have:
We derive the function:
h '(t) = - 9.84t + 17.69
We equal zero and clear t:
-9.84t + 17.69 = 0
t = 17.69 / 9.84
t = 1.80
We evaluate the time in which it reaches the maximum height in the function:
h (1.80) = - 4.92 * (1.80) ^ 2 + 17.69 * (1.80) +575
h (1.80) = 590.90
Therefore, the range is given by:
[0, 590.9]
Answer:
the domain and range are:
domain: [0, 12.76] range: [0, 590.9]