Answer:
(f-g) (x)=731.............
happy with solution rate this
La propiedad (a, byc son números reales, variables o expresiones algebraicas)1. Propiedad de distribución a • (b + c) = a • b + a • c2. Propiedad conmutativa de la adición a + b = b + a3. Propiedad conmutativa de la multiplicación a • b = b • a4. Propiedad asociativa de la adición a + (b + c) = (a + b) + c
Answer:
![x= -\frac{ln [\frac{5P}{8000-P}]}{0.002}](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%7D%7B0.002%7D)
a) ![x= -\frac{ln [\frac{5*200}{8000-200}]}{0.002} =1027.062 \approx 1027](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A200%7D%7B8000-200%7D%5D%7D%7B0.002%7D%20%3D1027.062%20%5Capprox%201027)
b) ![x= -\frac{ln [\frac{5*800}{8000-800}]}{0.002} =293.893 \approx 294](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A800%7D%7B8000-800%7D%5D%7D%7B0.002%7D%20%3D293.893%20%5Capprox%20294)
Step-by-step explanation:
For this case we have the following function:

We can solve for x like this. First we can reorder the expression like this:



Now we can apply natura log on both sids and we got:
![ln[\frac{40000}{8000-P} -5] = ln e^{-0.002x}](https://tex.z-dn.net/?f=%20ln%5B%5Cfrac%7B40000%7D%7B8000-P%7D%20-5%5D%20%3D%20ln%20e%5E%7B-0.002x%7D)
![ln [\frac{5P}{8000-P}] = -0.002x](https://tex.z-dn.net/?f=%20ln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%20%3D%20-0.002x%20)
And if we solve for x we got:
![x= -\frac{ln [\frac{5P}{8000-P}]}{0.002}](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%7D%7B0.002%7D)
Part a
For this case we can replace P = 200 and see what we got for x like this:
![x= -\frac{ln [\frac{5*200}{8000-200}]}{0.002} =1027.062 \approx 1027](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A200%7D%7B8000-200%7D%5D%7D%7B0.002%7D%20%3D1027.062%20%5Capprox%201027)
Part b
For this case we can replace P = 800 and see what we got for x like this:
![x= -\frac{ln [\frac{5*800}{8000-800}]}{0.002} =293.893 \approx 294](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A800%7D%7B8000-800%7D%5D%7D%7B0.002%7D%20%3D293.893%20%5Capprox%20294)
Let us assume the first even number = n
The second consecutive even number = n + 2
The third consecutive even number = n + 4
The addition of the three consecutive even numbers is 42 and it is already given in the question. Based on the information's given in the question, the answer can be easily deduced.
Then, the equation can be written as
n + (n + 2) + (n + 4) = 42
3n + 6 = 42
3n = 42 - 6
3n = 36
n = 36/3
= 12
So
The first even number = 12
The second consecutive even number = n + 2
= 12 + 2
= 14
The third consecutive even number = n + 4
= 12 + 4
= 16
So the three consecutive even numbers are 12, 14, 16.