Answer:
+3
Explanation:
Chlorine is anion with a -1 charge. But they are three chlorine atoms.
-1 * 3 = -3
So they have a -3 charge.
So to balance the compound, the nickel has to be a cation with a +3 charge.
-3 + 3 = 0
Furthermore, a chemical bond always has a 0 charge. Remember that.
Hope it helped! Rate my answer a 5 star if correct.
The glass opposite to the negative electrode started to glow. Hence, option B is correct.
<h3>What is a cathode ray tube?</h3>
A cathode-ray tube (CRT) is a specialized vacuum tube in which images are produced when an electron beam strikes a phosphorescent surface.
J.J. Thomson, through his famous Cathode ray experiment, proved that all atoms contain small negatively charged particles known as electrons. In the experiment, he applied electric voltage across a cathode ray tube. a fluorescent material coating was done on the positive side. When the voltage was applied, the positive side has glowing dots.
Hence, option B is correct.
Learn more about the cathode ray tube here:
brainly.com/question/14409449
#SPJ1
Answer:
Specific heat of calcium carbonate(C) = 0.82 (Approx)
Explanation:
Given:
Energy absorbs (q) = 85 J
Change in temperature (Δt) = 34.9 - 21 = 13.9°C
Mass of calcium carbonate = 7.47 g
Find:
Specific heat of calcium carbonate(C)
Computation:
Specific heat of calcium carbonate(C) = q / m(Δt)
Specific heat of calcium carbonate(C) = 85 / (7.47)(13.9)
Specific heat of calcium carbonate(C) = 85 / 103.833
Specific heat of calcium carbonate(C) = 0.8186
Specific heat of calcium carbonate(C) = 0.82 (Approx)
Answer:
The correct answer is 4
Explanation:
Boron trifluoride (BF₃) has a molecular geometry (as shown in the image in the question) referred to as trigonal planar; this is because each of the the fluorine atoms/molecules (bonded to the central boron atom) is placed in such a way that they form the three "end points"/"domains" of an equilateral triangle. Hence, the correct option is the last option.