Answer:
1..... nucleus 
2......electron cloud 
3.......protons
4........Neutrons
5..........electron
6............electrons 
7...............Isotopes
8.....,...........ions
9....................charge
 
        
             
        
        
        

Explanation:
Sodium hydroxide completely ionizes in water to produce sodium ions and hydroxide ions. Hydroxide ions are in excess and neutralize all acetic acid added by the following ionic equation: 

The mixture would contain
if 
 undergoes no hydrolysis; the solution is of volume 
 after the mixing. The two species would thus be of concentration 
 and 
, respectively.
Construct a RICE table for the hydrolysis of 
 under a basic aqueous environment (with a negligible hydronium concentration.)

The question supplied the <em>acid</em> dissociation constant 
for acetic acid 
; however, calculating the hydrolysis equilibrium taking place in this basic mixture requires the <em>base</em> dissociation constant 
 for its conjugate base, 
. The following relationship relates the two quantities: 

... where the water self-ionization constant 
 under standard conditions. Thus 
. By the definition of 
:
![[\text{HAc} (aq)] \cdot [\text{OH}^{-} (aq)] / [\text{Ac}^{-} (aq) ] = K_b =  10^{-pK_{b}}](https://tex.z-dn.net/?f=%20%5B%5Ctext%7BHAc%7D%20%28aq%29%5D%20%5Ccdot%20%5B%5Ctext%7BOH%7D%5E%7B-%7D%20%28aq%29%5D%20%2F%20%5B%5Ctext%7BAc%7D%5E%7B-%7D%20%28aq%29%20%5D%20%3D%20K_b%20%3D%20%2010%5E%7B-pK_%7Bb%7D%7D%20)


![[\text{OH}^{-}] = 0.30 +x \approx 0.30 \; \text{M}](https://tex.z-dn.net/?f=%20%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D%20%3D%200.30%20%2Bx%20%5Capprox%200.30%20%5C%3B%20%5Ctext%7BM%7D%20)
![pH = pK_{w} - pOH = 14 + \text{log}_{10}[\text{OH}^{-}] = 14 + \text{log}_{10}{0.30} = 13.5](https://tex.z-dn.net/?f=%20pH%20%3D%20pK_%7Bw%7D%20-%20pOH%20%3D%2014%20%2B%20%5Ctext%7Blog%7D_%7B10%7D%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D%20%3D%2014%20%2B%20%5Ctext%7Blog%7D_%7B10%7D%7B0.30%7D%20%3D%2013.5%20)
 
        
             
        
        
        
Answer:
newtons 3rd law of motion 
Explanation:
 
        
             
        
        
        
Answer:
The mass in grams of glucose produced when 132.0 g of CO2 reacts with an excess of water is 90.1 grams
Explanation:
The chemical equation for the reaction is
6H₂O + 6CO₂  → C₆H₁₂O₆ + 6O₂
From the reaction, it is seen that 6 moles of H₂O reacts ith 6 moles of CO₂ to produce 1 mole of glucose  C₆H₁₂O₆ and 6 moles oxygen gas
The molar mass of CO₂ = 44.01 g/mol
There fpre 132.0 g contains 132.0/44.01 moles or ≅ 3 moles
However since 6 moles of CO₂ produces 1 mole of O₂, then 3 moles of CO₂ will prduce 1/6×3 or 0.5 moles of C₆H₁₂O₆
and since the molar mass (or the mass of one mole) of C₆H₁₂O₆ is 180.2 grams/mole then 0.5 mole of C₆H₁₂O₆ will have a mass of 
mass of 1 mole C₆H₁₂O₆ = 180.2 g
mass of 0.5 mole C₆H₁₂O₆ = 180.2 g × 0.5 = 90.1 grams
Mass of glucose produced = 90.1 grams