The answer is B- 124 degrees
Answer:
mirrors and metal thermometers
Explanation:
ooga booga
<u>Answer:</u> The rate law of the reaction is ![\text{Rate}=k[HgCl_2][C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5BC_2O_4%5E%7B2-%7D%5D%5E2)
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[HgCl_2]^a[C_2O_4^{2-}]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5Ea%5BC_2O_4%5E%7B2-%7D%5D%5Eb)
where,
a = order with respect to 
b = order with respect to 
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Expression for rate law for third observation:
....(3)
Expression for rate law for fourth observation:
....(4)
Dividing 2 from 1, we get:

Dividing 2 from 3, we get:

Thus, the rate law becomes:
![\text{Rate}=k[HgCl_2]^1[C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5E1%5BC_2O_4%5E%7B2-%7D%5D%5E2)
The initial temperature of the copper metal was 27.38 degrees.
Explanation:
Data given:
mass of the copper metal sample = 215 gram
mass of water = 26.6 grams
Initial temperature of water = 22.22 Degrees
Final temperature of water = 24.44 degrees
Specific heat capacity of water = 0.385 J/g°C
initial temperature of copper material , Ti=?
specific heat capacity of water = 4.186 joule/gram °C
from the principle of:
heat lost = heat gained
heat gained by water is given by:
q water = mcΔT
Putting the values in the equation:
qwater = 26.6 x 4.186 x (2.22)
qwater = 247.19 J
qcopper = 215 x 0.385 x (Ti-24.4)
= 82.77Ti - 2019.71
Now heat lost by metal = heat gained by water
82.77Ti - 2019.71 = 247.19
Ti = 27.38 degrees